Skip to main content

Artificial Instruction: A Method for Relating Learning Theory to Instructional Design

  • Conference paper

Part of the book series: NATO ASI Series ((NATO ASI F,volume 85))

Abstract

In the past, research on learning has been linked to instruction by the derivation of general principles of instructional design from learning theories. But such design principles are often difficult to apply to particular instructional issues. A new method for relating research on learning to instructional design is proposed. Different ways of teaching a particular topic can be evaluated by teaching that topic to a simulation model of learning, and recording the complexity of the resulting learning processes. An application of this method to a traditional problem in mathematics education suggests that conceptual instruction in arithmetic causes more cognitive strain than mechanical instruction, contrary to a widely held belief in the mathematics education community The advantages and disadvantages of the general method are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. R.: The architecture of cognition.. Cambridge, MA: Harvard University Press 1983

    Google Scholar 

  2. Anderson, J. R., Boyle, C. F., Farrell, R., & Reiser, B. J.: Cognitive principles in the design of computer tutors. In: Modelling Cognition ( P. Morris, ed.). New York, NY: Wiley 1987

    Google Scholar 

  3. Anzai, Y., & Simon, H. A.: The theory of learning by doing. Psychological Review, 86, pp. 124–140 (1979)

    Article  Google Scholar 

  4. Brown, J. S., & Burton, R. R.: Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, 2, pp. 155–192 (1978)

    Article  Google Scholar 

  5. Brownell, W. A.: An experiment on “borrowing” in third-grade arithmetic. Journal of Educational Research, 41, pp. 161–263 (1947)

    Google Scholar 

  6. Brownell, W. A., & Moser, H. E.: Meaningful vs. mechanical learning: A study in Grade III subtraction. Durham, NC: Duke University Press 1949

    Google Scholar 

  7. Bruner, J. S.: The process of education. New York, NY: Vintage Books 1960

    Google Scholar 

  8. Ernst, A. M., & Ohlsson, S.: The cognitive complexity of the regrouping and augmenting algorithms for subtraction: A theoretical analysis. Technical Report No. KUL-89–06. Pittsburgh, PA: University of Pittsburgh 1989

    Google Scholar 

  9. Evertz, R.: A production system account of children’s errors in fraction subtraction. Technical Report No. CAL 28. Milton Keynes, UK: The Open University 1982

    Google Scholar 

  10. Glaser, R.: Components of a theory of instruction: Toward a science of design. Review of Educational Research, 46, pp. 1–24 (1976)

    Google Scholar 

  11. Glaser, R.: The contributions of B. F. Skinner to education and some counterinfluences. In: Impact of research on education: Some case studies ( P. Suppes, ed.). Washington, D.C.: National Academy of Education 1978

    Google Scholar 

  12. Glaser, R.: Instructional psychology: Past, present, and future. American Psychologist, 37, pp. 292–305 (1982)

    Article  Google Scholar 

  13. Greeno, J. G.: Some examples of cognitive task analyses with instructional implications. In Aptitude, learning, and instruction. Volume 2: Cognitive process analyses of learning and problem solving ( R. E. Snow, P. A. Federico, & W. E. Montague, eds.). Hillsdale, NJ: Lawrence Erlbaum Associates 1980

    Google Scholar 

  14. Haseman, K.: Die Beschreibung von Schulerfehlern mit kognitionstheoretischen Modellen. Der Mathematikunterricht, 31, pp. 6–15 (1985)

    Google Scholar 

  15. Richert, J. (Ed.): Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates 1986

    Google Scholar 

  16. Hollan, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R.: Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press 1986

    Google Scholar 

  17. Hunting, R. P.: Alan: A case study of knowledge of units and performance with fractions. Journal for Research in Mathematics Education, 14, pp. 182–197 (1983)

    Article  Google Scholar 

  18. Klahr, D., Langley, P., & Neches, R. (Eds.): Production system models of learning and development. Cambridge, MA: MIT Press 1987

    Google Scholar 

  19. Laird, J., Rosenbloom, P., & Newell, A.: Universal subgoaling and chunking: The automatic generation and learning of goal hierarchies. Boston, MA: Kluwer 1986

    Google Scholar 

  20. Langley, P.: A general theory of discrimination learning. In: Production system models of learning and development ( D. Klahr, P. Langley, & R. Neches, eds.). Cambridge, MA: MIT Press 1987

    Google Scholar 

  21. McDermott, J., & Forgy, C.: Production system conflict resolution strategies. In: Pattern-directed inference systems ( D. A. Waterman, & F. Hayes-Roth, eds.). New York, NY. Academic Press 1978

    Google Scholar 

  22. Murray, F. B., Ames, G. J, & Botvin, G. J.: Acquisition of conservation through cognitive dissonance. Journal of Educational Psychology, 69, pp. 519–527 (1977)

    Article  Google Scholar 

  23. Newell, A., & Simon, H. A.: Human problem solving. Englewood Cliffs, NJ: Prentice-Hall 1972

    Google Scholar 

  24. Ohlsson, S.: Transfer of training in procedural learning: A matter of conjectures and refutations? In: Computational models of learning ( L. Bolc, ed.). Berlin, West Germany: Springer-Verlag 1987

    Google Scholar 

  25. Ohlsson, S.: The conceptual basis for subtraction with regrouping: A mathematical analysis. Technical Report No. KUL-02–88. Pittsburgh, PA: University of Pittsburgh 1988

    Google Scholar 

  26. Ohlsson, S.: Computer simulation and its impact on educational research and practice. International Journal of Educational Research, 12, pp. 5–34 (1988)

    Google Scholar 

  27. Ohlsson, S., Bee, N. V., & Zeller, P. A.: Empirical evaluation of a computer-based environment for fractions. Technical Report No. KUL-89–07. Pittsburgh, PA: University of Pittsburgh 1989

    Google Scholar 

  28. Ohlsson, S., & Rees, E.: Adaptive search through constraint violations. Journal of Experimental and Theoretical Artificial Intelligence (in press)

    Google Scholar 

  29. Ohlsson, S., & Rees, E.: The function of conceptual understanding in the learning of arithmetic procedures. Cognition & Instruction. (in press)

    Google Scholar 

  30. Pirolli, P. L., & Greeno, J. G.: The problem space of instructional design. In: Intelligent tutoring systems: Lessons learned ( J. Psotka, L. D. Massey, & S. A. Mutter, eds.). Hillsdale, NJ: Lawrence Erlbaum Associates 1988

    Google Scholar 

  31. Post, T. R., Wachsmuth, I., Lesh, R., & Behr, M. J.: Order and equivalence of rational numbers: A cognitive analysis. Journal for Research in Mathematics Education, 16, pp. 18–36 (1985)

    Article  Google Scholar 

  32. Reigeluth, C, M., & Stein, F. S.: The elaboration theory of instruction. In: Instructional-design theories and models: An overview of their current status ( C. M. Reigeluth, ed.). Hillsdale, NJ: Lawrence Erlbaum Associates 1983

    Google Scholar 

  33. Resnick, L. B., & Omanson, S. F.: Learning to understand arithmetic. In: Advances in instructional psychology ( R. Glaser, ed.). Hillsdale, NJ: Lawrence Erlbaum Associates 1987

    Google Scholar 

  34. Scandura, J. M.: Problem solving. A structural/process approach with instructional implications. New York, NY: Academic Press 1977

    Google Scholar 

  35. Shuell, T. J.: Cognitive conceptions of learning. Review of Educational Research, 56, pp. 411–436 (1986)

    Google Scholar 

  36. Smith, J.: Learning rational numbers. Unpublished doctorial dissertation, School of Education, University of California at Berkeley 1990

    Google Scholar 

  37. Tatsuoka, K. K.: Analysis of errors in fraction addition and subtraction problems. Technical Report, Urbana-Champaign, IL: University of Illinois January 1984

    Google Scholar 

  38. VanLehn, K.: Bugs are not enough: Empirical studies of bugs, impasses and repairs in procedural skills Journal of Mathematical Behavior, 3, pp. 3–71 (1982)

    Google Scholar 

  39. VanLehn, K.: Mind bugs: The origins of procedural misconceptions. Cambridge, MA: MIT Press 1990

    Google Scholar 

  40. VanLehn, K.: Rule acquisition events in the discovery of problem solving strategies. Cognitive Science (in press)

    Google Scholar 

  41. Young, R. M., & O’Shea, T.: Errors in children’s subtraction. Cognitive Science, 5, pp. 153–177 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohlsson, S. (1992). Artificial Instruction: A Method for Relating Learning Theory to Instructional Design. In: Jones, M., Winne, P.H. (eds) Adaptive Learning Environments. NATO ASI Series, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77512-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77512-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77514-7

  • Online ISBN: 978-3-642-77512-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics