Skip to main content

Oxygen and Animal Metabolism: General and Comparative Aspects

  • Conference paper
OXYGEN: Basis of the Regulation of Vital Functions in the Fetus
  • 70 Accesses

Abstract

Oxygen is the most abundant chemical element in the earth’s crust, it accounts for about 47% of the weight of the solid crust, and 88.8% of the hydrosphere. Bound in these inorganic compounds, oxygen cannot be used directly for animal metabolism. It is the free molecular dioxygen O2 (less than 0.01% of the total oxygen in the earth crust) that is of eminent biological importance. Another form of molecular oxygen, the trioxygen ozone — concentrated in the ozone layer, 15–30 km above the earth’s surface — is of indirect benefit because it protects organisms from radiation damage by absorbing most of the solar ultraviolet radiation.

Work from the author’s laboratory has been supported by grants form the Deutsche Forschungsgemeinschaft, D-5300 Bonn

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson DJ (1989) Molecular biology of the cell, 2nd edn. Garland, New York

    Google Scholar 

  • Amoroso EC (1968) The evolution of viviparity. Proc Roy Soc Med 61: 1188–1200

    PubMed  CAS  Google Scholar 

  • Badwey JA, Karnovsky ML (1980) Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 49: 695–726

    Article  PubMed  CAS  Google Scholar 

  • Balaban RS (1990) Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol 258 (Cell Physiol 27): C377–C389

    PubMed  CAS  Google Scholar 

  • Bartlett GR (1982) Phosphate compounds in red cells of two dogfish sharks: Squalus acanthias and Mustellus canis. Comp Biochem Physiol 73A: 135–140

    Article  Google Scholar 

  • Berner NJ, Ingermann RL (1988) Molecular basis of the difference in oxygen affinity between maternal and foetal red blood cells in the viviparous garter snake Thamnophis elegans. J Exp Biol 140: 437–453

    CAS  Google Scholar 

  • Boyle R (1668) New experiments, concerning the relation between light and air. Philos Trans R Soc 2 (31): 581–600

    Google Scholar 

  • Cutler RG (1984) Antioxidants, aging and longevity. In: Pryor WA (ed) Free radicals in biology, Vol. 6. Academic, New York, pp 371–428

    Google Scholar 

  • Darnell J, Lodish H, Baltimore D (1986) Molecular cell biology. Scientific American Books, New York

    Google Scholar 

  • Exbrayat J-M, Delsol M (1985) Reproduction and growth of Typhlonectes compressicaudus — a viviparous gymnophione. Copeia 4: 950–955

    Google Scholar 

  • French TJ, Holness MJ, McLennan PA, Sugden MC (1988) Effects of nutritional status and acute variation in substrate supply on cardiac and skeletal-muscle fructose 2,6-bisphosphate concentrations. Biochem J 250: 773–779

    PubMed  CAS  Google Scholar 

  • Garlick RL, Davis BJ, Farmer M, Fyhn HJ, Fyhn UEH, Noble RW, Powers DA, Riggs A, Weber RE (1979) A fetal-maternal shift in the oxygen equilibrium of the hemoglobin from the viviparous caecilian, Typhlonectes compressicauda. Comp Biochem Physiol 62A: 239–244

    CAS  Google Scholar 

  • Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisoning and X-irradiation: a mechanism in common. Science 119: 623–626

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DL (1981) Perspective on the history of oxygen and life. In: Gilbert DL (ed) Oxygen and living processes. Springer, New York Heidelberg Berlin, pp 1–43

    Chapter  Google Scholar 

  • Harold FM (1986) The vital force: a study of bioenergetics. Freeman, New York

    Google Scholar 

  • Hochachka PW, Guppy M (1987) Metabolic arrest and the control of biological time. Harvard University Press, Cambridge

    Google Scholar 

  • Hogarth PJ (1976) Viviparity. Arnold, London

    Google Scholar 

  • Ingermann RL, Terwilliger RC (1984) Facilitation of maternal-fetal oxygen transfer in fishes: anatomical and molecular specializations. In: Seymour RS (ed) Respiration and metabolism of embryonic vertebrates. Junk, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Jensen A, Hohmann M, Künzel W (1987) Dynamic changes in organ blood flow and oxygen consumption during acute asphyxia in fetal sheep. J Developm Physiol 9: 543–559

    CAS  Google Scholar 

  • Kammer AE, Heinrich B (1978) Insect flight metabolism. Adv Insect Physiol 13: 133–228

    Article  CAS  Google Scholar 

  • Korsgaard B, Weber RE (1989) Maternal-fetal trophic and respiratory relationships in viviparous ectothermic vertebrates. Adv Comp Environ Physiol 5: 209–233

    Google Scholar 

  • Krebs HA (1972) The Pasteur effect and the relations between respiration and fermentations. Essays Biochem 8: 1–34

    PubMed  CAS  Google Scholar 

  • Lagunas R (1981) Is Saccharomyces cerevisiae a typical facultative anaerobe? Trends Biochem Sci 6: 201–203

    Article  CAS  Google Scholar 

  • Lipmann F (1941) Metabolic generation and utilization of phosphate bond energy. In: Nord FF, Werkman CH (eds) Advances in enzymology and related subjects Vol 1. Interscience, New York, pp 99–162

    Google Scholar 

  • Lombardi J, Wourms JP (1985 a) The trophotaenial placenta of a viviparous goodeid fish. I. Ultrastructure of the internal ovarian epithelium, the maternal component. J Morphol 184: 277–292

    Article  PubMed  CAS  Google Scholar 

  • Lombardi J, Wourms JP (1985b) The trophotaenial placenta of a viviparous fish II. Ultrastructure of the trophotaenial placenta, the embryonic component. J Morphol 184: 293–309

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–148

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Taiz L (1989) The evolution of H+-ATPases. Trends Biochem Sci 14: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Newsholme EA, Leech AR (1983) Biochemistry for the medical Sciences. Wiley, Chichester

    Google Scholar 

  • Passonneau JV, Lowry OH (1962) Phosphofructokinase and the Pasteur effect. Biochem Biophys Res Commun 7: 10–15

    Article  PubMed  CAS  Google Scholar 

  • Pasteur L (1861) Expériences et vues nouvelles sur la nature de fermentations. C R Acad Sci 52: 1260–1264

    Google Scholar 

  • Pasteur L (1863) Recherches sur la putrefaction. Comp Rend Acad Sci 56: 1189–1194

    Google Scholar 

  • Racker E (1980) From Pasteur to Mitchell: a hundred years of bioenergetics. Fed Proc 39: 210–215

    PubMed  CAS  Google Scholar 

  • Rutherford AW (1989) Photosystem H, the water-splitting enzyme. Trends Biochem Sci 14: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS (1984) Respiration and metabolism of embryonic vertebrates. Junk, Dordrecht

    Book  Google Scholar 

  • Siesjö BK (1978) Brain energy metabolism. Wiley, Chichester

    Google Scholar 

  • Storey KB (1985) A re-evaluation of the Pasteur effect: new mechanisms in anaerobic metabolism. Mol Physiol 8: 439–461

    CAS  Google Scholar 

  • Stryer L (1988) Biochemistry. Freeman, New York

    Google Scholar 

  • Urich K (1990) Vergleichende Biochemie der Tiere. Fischer, Stuttgart

    Google Scholar 

  • Van Schaftingen E (1987) Fructose 2,6-bisphosphate. Adv Enzymol Relat Areas Mol Biol 59: 315–395

    PubMed  Google Scholar 

  • Van Schaftingen E, Hue L, Hers HG (1980) Fructose 2,6-bisphosphate, the probable structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem J 192: 897–901

    PubMed  Google Scholar 

  • Wake MH (1980) The reproductive biology of Nectophrynoides malcolmi (Amphibia: Bufonidae), with comments on the evolution of reproductive modes in the genus Nectophrynoides. Copeia 2: 193–209

    Article  Google Scholar 

  • Wald G (1966) On the nature of cellular respiration. In: Kaplan NO, Kennedy EP (eds) Current aspects of biochemical energetics. Academic, New York, pp 27–32

    Google Scholar 

  • Weber RE, Hartvig M (1984) Specific fetal hemoglobin underlies the fetal-maternal shift in blood oxygen affinity in a viviparous teleost. Mol Physiol 6: 27–32

    CAS  Google Scholar 

  • Weber RE, Jensen FB (1988) Functional adaptations in hemoglobins from ectothermic vertebrates. Annu Rev Physiol 50: 161–179

    Article  PubMed  CAS  Google Scholar 

  • Weber RE, Wells RMG, Rosetti JE (1983) Allosteric interactions governing oxygen equilibria in the hemoglobin system of the spiny dogfish, Squalus acanthias. J Exp Biol 103: 109–120

    PubMed  CAS  Google Scholar 

  • Wegener G (1981) Comparative aspects of energy metabolism in nonmammalian brains under normoxic and hypoxic conditions. In: Stefanovich V (ed) Animal models and hypoxia. Pergamon, Oxford, pp 87–109

    Google Scholar 

  • Wegener G (1988) Oxygen availability, energy metabolism, and metabolic rate in invertebrates and vertebrates. In: Acker H (ed) Oxygen sensing in tissues. Springer, Berlin Heidelberg New York Tokyo, pp 13–35

    Google Scholar 

  • Wegener G (1990) Elite invertebrate athletes: flight in insects, its metabolic requirements and regulation and its effects on life span. In: Nazar K, Kaciuba-Uscilko H, Terjung RL, Budohoski L (eds) International perspectives in exercise physiology. Human Kinetics, Champaign, pp 83–87

    Google Scholar 

  • Wegener G, Michel R, Newsholme EA (1986a) Fructose 2,6-bisphosphate as a signal for changing from sugar to lipid oxidation during flight in locusts. FEBS Lett 201: 129–132

    Article  CAS  Google Scholar 

  • Wegener G, Michel R, Thuy M (1986b) Anoxia in lower vertebrates and insects: effects on brain and other organs. Zool Beitr 30: 103–124

    Google Scholar 

  • Wegener G, Beinhauer I, Klee A, Newsholme EA (1987) Properties of locust muscle 6-phosphofructokinase and their importance in the regulation of glycolytic flux during prolonged flight. J Comp Physiol B 157: 315–326

    Article  CAS  Google Scholar 

  • Wegener G, Krause U, Thuy M (1990) Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog. FEBS Lett 267: 257–260

    Article  PubMed  CAS  Google Scholar 

  • Wegener G, Bolas NM, Thomas A AG (1991) Locust flight metabolism studied in vivo by 31P NMR spectroscopy. J Comp Physiol B 161: 247–256

    Article  CAS  Google Scholar 

  • Williams RJP (1985) The necessary and desirable production of radicals in biology. Philos Trans R Soc Lond B 311: 593–604

    Article  CAS  Google Scholar 

  • Wourms JP (1981) Viviparity: the maternal-fetal relationship in fishes. Am Zool 21: 473–515

    Google Scholar 

  • Yaron Z (1985) Reptilian placentation and gestation: structure, function and endocrine control. In: Gans C (ed) Biology of the reptilia, vol 15 B. Wiley, New York, pp 527–604

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wegener, G. (1992). Oxygen and Animal Metabolism: General and Comparative Aspects. In: Künzel, W., Kirschbaum, M. (eds) OXYGEN: Basis of the Regulation of Vital Functions in the Fetus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77469-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77469-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77471-3

  • Online ISBN: 978-3-642-77469-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics