Skip to main content

Prodynorphin Biosynthesis and Posttranslational Processing

  • Chapter
Opioids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 1))

Abstract

In 1979 Goldstein and colleagues (Goldstein et al. 1979) reported the characterization and partial sequence of a highly potent endogenous opioid peptide, obtained from pituitary extracts, that contained the amino acid sequence for leu-enkephalin at its amino-terminus (this peptide was found to be 17 amino acids in length when sequencing was completed; Goldstein et al. 1981). They were so impressed with the potency of the peptide that they named it dynorphin, from the Greek prefix dyn-, signifying strength or power. The same year, Kangawa and colleagues (Kangawa and Matsuo 1979) reported the partial sequence of another highly potent opioid peptide, obtained from hypothalamic extracts, containing the sequence for leu-enkephalin at its amino-terminus (this peptide, which they named α-neo-endorphin, was found to be ten amino acids in length when sequencing was completed; Kangawa et al. 1981). Subsequently, several other leu-enkephalin-extended peptides were isolated from brain and pituitary, including dynorphin A 1–8 (Minamino et al. 1980), β-neo-endorphin (Minamino et al. 1981), and dynorphin B (also known as rimorphin; Fischli et al. 1982a,b; Kilpatrick et al. 1982a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker JM (1984) 463 Endogenous opioids: biology and function. Annu Rev Neurosci 7:223–255

    Article  PubMed  CAS  Google Scholar 

  • Anderson KD, Reiner A (1990) Extensive co-occurrence of substance P and dynorphin in striatal projection neurons: an evolutionarily conserved feature of basal ganglia organization. J Comp Neurol 295: 339–369

    Article  PubMed  CAS  Google Scholar 

  • Benjannet S, Rondeau N, Day R, Chretien M, Seidah NG (1991) PCI and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci USA 88: 3564

    Article  PubMed  CAS  Google Scholar 

  • Caudle RM, Isaac L (1988) A novel interaction between dynorphin (1–13) and an N-methyl-D-aspartate site. Brain Res 443: 329–332.

    Article  PubMed  CAS  Google Scholar 

  • Cherubini E, North RA (1985) μ and к opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci USA 82:1860–1863

    Article  PubMed  CAS  Google Scholar 

  • Chrétien M, Li CH (1967) Isolation and purification of y lipotropic hormone from sheep pituitary glands. Can J Biochem 45: 1163

    Article  PubMed  Google Scholar 

  • Collard MW, Day R, Akil H, Uhler MD, Douglass JO (1990) Sertoli cells are the primary site of prodynorphin gene expression in rat testis: regulation of mRNA synthesis and peptide secretion by cAMP analogs in cultured cells. Mol Endocrinol 4: 1488

    Article  PubMed  CAS  Google Scholar 

  • Cone RI, Weber E, Barchas JD, Goldstein A (1983) Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary. J Neurosci 3: 2146–2152

    PubMed  CAS  Google Scholar 

  • Corbett AD, Paterson SJ, McKnight AT, Magnan J, Kosterlitz HW (1982) Dynorphin 1-8 and dynorphin 1-9 are ligands for the kappa-subtype of opiate receptor. Nature 299: 79–81

    Article  PubMed  CAS  Google Scholar 

  • Day R, Akil H (1986) Bridge peptide is a cleavage product of pro-dynorphin processing in the rat anterior pituitary. Natl Inst Drug Abuse Res Monogr Ser 75: 244–246

    CAS  Google Scholar 

  • Day R, Akil H (1989) The posttranslational processing of prodynorphin in the rat anterior pituitary. Endocrinology 124: 2392–2405

    Article  PubMed  CAS  Google Scholar 

  • Day R, Schäfer MK-H, Collard MW, Watson SJ, Akil H (1991) Atypical prodynorphin gene expression in corticosteroid producing cells of the rat adrenal gland. Proc Natl Acad Sci USA 88: 1320

    Article  PubMed  CAS  Google Scholar 

  • Devi L (1991) Consensus sequence for processing of peptide precursors at monobasic sites. FEBS Lett 280: 189

    Article  PubMed  CAS  Google Scholar 

  • Devi L, Goldstein A (1984) Dynorphin converting enzyme with unusual specificity from rat brain. Proc Natl Acad Sci USA 81: 1892–1896

    Article  PubMed  CAS  Google Scholar 

  • Devi L, Goldstein A (1986) Conversion of leumorphin (dynorphin B-29) to dynorphin B and dynorphin B-14 by thiol protease activity. J Neurochem 47: 154–157

    Article  PubMed  CAS  Google Scholar 

  • Devi L, Gupta P (1989) Expression and posttranslational processing of pre-prodynorphin in the rat anterior pituitary cell line GH4C1. J Neuroendocrinol 1: 363

    Article  PubMed  CAS  Google Scholar 

  • Devi L, Gupta P, Douglass J (1989) Expression and posttranslational processing of preprodynorphin complementary DNA in the mouse anterior pituitary cell line AtT-20. Mol Endocrinol 3: 1852–1860

    Article  PubMed  CAS  Google Scholar 

  • Dores RM, Akil H (1985) Steady state levels of pro-dynorphin-related end products in the striatum and substantia nigra of the adult rhesus monkey. Peptides 2: 143–148

    Article  Google Scholar 

  • Dores RM, Lewis ME, Khachaturian H, Watson SJ, Akil H (1985) Analysis of opioid and non-opioid end products of pro-dynorphin in the substantia nigra of the rat. Neuropeptides 5: 501–504

    Article  PubMed  CAS  Google Scholar 

  • Faden Al (1990) Opioid and nonopioid mechanisms may contribute to dynorphin’s pathophysiological actions in spinal cord injury. Ann Neurol 27: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Faden Al, Jacobs TP (1984) Dynorphin-related peptides cause motor dysfunction in the rat through a non-opiate action. Br J Pharmacol 81: 271–276

    PubMed  CAS  Google Scholar 

  • Fallon JH, Leslie FM, Cone RI (1985) Dynorphin-containing pathways in the substantia nigra and ventral tegmentum: a double labeling study using combined immunofluorescence and retrograde tracing. Neuropeptides 5: 457–460

    Article  PubMed  CAS  Google Scholar 

  • Fischli W, Goldstein A, Hunkapiller MW, Hood LE (1982a) Isolation and amino acid sequence analysis of a 4000-dalton dynorphin from porcine pituitary. Proc Natl Acad Sci USA 79: 5435–5437

    Article  PubMed  CAS  Google Scholar 

  • Fischli W, Goldstein A, Hunkapiller MW, Hood LE (1982b) Two “big” dynorphins from porcine pituitary. Life Sci 31: 1769–1772

    Article  PubMed  CAS  Google Scholar 

  • Friederich MW, Friederich DP, Walker JM (1987) Effects of dynorphin (1–8) on movement: non-opiate effects and structure-activity relationship. Peptides 8: 837–840

    Article  PubMed  CAS  Google Scholar 

  • Friedman HJ, Jen MF, Chang JK, Lee NM, Loh HH (1981) Dynorphin: a possible modulatory peptide on morphine or beta-endorphin analgesia in mouse. Eur J Pharmacol 69: 357–360

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin- (1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 76: 6666–6670

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 78: 7219–7223

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, Kowall NW, Vonsattel JP, Bird ED, Richardson EJ (1986) Gilles de la Tourette’s syndrome. A postmortem neuropathological and immunohistochemical study. J Neurol Sci 75: 225–241

    Google Scholar 

  • Hanson GR, Merchant KM, Letter AA, Bush L, Gibb JW (1987) Methamphetamine-induced changes in the striatal-nigral dynorphin system: role of D-1 and D-2 receptors. Eur J Pharmacol 144: 245–246

    Article  PubMed  CAS  Google Scholar 

  • Hanson GR, Merchant KM, Letter AA, Bush L, Gibb JW (1988) Characterization of methamphetamine effects on the striatal-nigral dynorphin system. Eur J Pharmacol 155: 11–18

    Article  PubMed  CAS  Google Scholar 

  • Hanson GR, Midgley LP, Bush LG, Johnson M, Gibb JW (1989) Comparison of responses by neuropeptide systems in rat to the psychotropic drugs, methamphetamine, cocaine and PCP. Natl Inst Drug Abuse Res Mongr Ser 95: 348

    CAS  Google Scholar 

  • Herman BH, Goldstein A (1985) Antinociception and paralysis induced by intrathecal dynorphin A. J Pharmacol Exp Ther 232: 27–32

    PubMed  CAS  Google Scholar 

  • Herman BH, Leslie F, Goldstein A (1980) Behavioral effects and in vivo degradation of intraventricularly administered dynorphin-(1–13) and D-Ala2- dynorphin-(1–11) in rats. Life Sci 27: 883–892

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, Hokfelt T, Ungerstedt U, Terenius L (1983) Functional studies with the opioid peptide dynorphin: acute effects of injections into the substantia nigra reticulata of naive rats. Life Sci 33 (Suppl 1): 555–558

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, Hokfelt T, Ungerstedt U, Terenius L, Goldstein M (1984) Effect of intranigar injections of dynorphin, dynorphin fragments and alpha-neoendorphin on rotational behavior in the rat. Eur J Pharmacol 102: 213–227

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, Christensson-Nylander I, Sharp T, Staines W, Reid M, Hokfelt T, Terenius L, Ungerstedt U (1986) Striatonigral dynorphin and substance P pathways in the rat: II. Functional analysis. Exp Brain Res 64: 193–207

    Google Scholar 

  • Herz A, Shippenberg TS (1989) Neurochemical aspects of addiction: opioids and other drugs of abuse. In: Goldstein A (ed) Molecular and cellular aspects of the addictions. Springer, Berlin Heidelberg New York, pp 111–141

    Chapter  Google Scholar 

  • Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine beta-neo- endorphin/dynorphin precursor. Nature 298: 245–249

    Article  PubMed  CAS  Google Scholar 

  • Kangawa K, Matsuo H (1979) Alpha-Neo-endorphin: a “big” Leu-enkephalin with potent opiate activity from porcine hypothalami. Biochem Biophys Res Commun 86: 153–160

    Article  PubMed  CAS  Google Scholar 

  • Kangawa K, Minamino N, Chino N, Sakakibara S, Matsuo H (1981) The complete amino acid sequence of alpha-neo-endorphin. Biochem Biophys Res Commun 99: 871–878

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick DL, Wahlstrom A, Lahm HW, Blacher R, Ezra E, Fleminger G, Udenfriend S (1982a) Characterization of rimorphin, a new [leu]enkephalin- containing peptide from bovine posterior pituitary glands. Life Sci 31: 1849–1852

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick DL, Wahlstrom A, Lahm HW, Blacher R, Udenfriend S (1982b) Rimorphin, a unique, naturally occurring [Leu]enkephalin-containing peptide found in association with dynorphin and alpha-neo-endorphin. Proc Natl Acad Sci USA 79: 6480–6483

    Article  PubMed  CAS  Google Scholar 

  • Leslie FM (1987) Methods used for the study of opioid receptors. Pharmacol Rev 39: 197–249

    PubMed  CAS  Google Scholar 

  • Leslie FM, Goldstein A (1982) Degradation of dynorphin-(1–13) by membrane-bound rat brain enzymes. Neuropeptides 2: 185–196

    Article  CAS  Google Scholar 

  • Li S, Sivam SP, Hong JS (1986) Regulation of the concentration of dynorphin A1-8 in the striatonigral pathway by the dopaminergic system. Brain Res 398: 390–392

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Sivam SP, McGinty JF, Jiang HK, Douglass J, Calavetta L, Hong JS (1988) Regulation of the metabolism of striatal dynorphin by the dopaminergic system. J Pharmacol Exp Ther 246: 403–408

    PubMed  CAS  Google Scholar 

  • Li SJ, Jiang HK, Stachowiak MS, Hudson PM, Owyang V, Nanry K, Tilson HA, Hong JS (1990) Influence of nigrostriatal dopaminergic tone on the biosynthesis of dynorphin and enkephalin in rat striatum. Mol Brain Res 8: 219–225

    Article  PubMed  CAS  Google Scholar 

  • Long JB, Kinney RC, Malcolm DS, Graeber GM, Holaday JW (1987) Intrathecal dynorphin A1-13 and dynorphin A3-13 reduce rat spinal cord blood flow by non- opioid mechanisms. Brain Res 436: 374–379

    Article  PubMed  CAS  Google Scholar 

  • Long JB, Martinez AA, Echevarria EE, Tidwell RE, Holaday JW (1988a) Hindlimb paralytic effects of prodynorphin-derived peptides following spinal subarachnoid injection in rats. Eur J Pharmacol 153: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Long JB, Mobley WC, Holaday JW (1988b) Neurological dysfunction after intrathecal injection of dynorphin A (1–13) in the rat: I. Injection procedures modify pharmacological responses. J Pharmacol Exp Ther 246: 1158–1166

    Google Scholar 

  • Long JB, Petras JM, Holaday JW (1988c) Neurologic deficits and neuronal injury in rats resulting from nonopioid actions of the delta opioid receptor antagonist ICI 174864. J Pharmacol Exp Ther 244: 1169–1177

    PubMed  CAS  Google Scholar 

  • Long JB, Petras JM, Mobley WC, Holaday JW (1988d) Neurological dysfunction after intrathecal injection of dynorphin A (1–13) in the rat: II. Nonopioid mechanisms mediate loss of motor, sensory and autonomic function. J Pharmacol Exp Ther 246: 1167–1174

    Google Scholar 

  • Long JB, Rigamonti DD, de Costa B, Rice KC, Martinez Arizala A (1989) Dynorphin A-induced rat hindlimb paralysis and spinal cord injury are not altered by the kappa opioid antagonist nor-binaltorphimine. Brain Res 497: 155–162

    PubMed  CAS  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7: 2445–2464

    PubMed  CAS  Google Scholar 

  • Massardier D, Hunt PF (1989) A direct non-opiate interaction of dynorphin-(1–13) with the N-methyl-D-aspartate ( NMDA) receptor. Eur J Pharmacol 170: 125–126

    Google Scholar 

  • Matsumoto RR, Brinsfield KH, Patrick RL, Walker JM (1988a) Rotational behavior mediated by dopaminergic and non-dopaminergic mechanisms following intranigral microinjection of specific mu, delta and kappa opiate agonists. J Pharmacol Exp Ther 246: 196–203

    PubMed  CAS  Google Scholar 

  • Matsumoto RR, Lohof AM, Patrick RL, Walker JM (1988b) Dopamine- independent motor behavior following microinjection of rimorphin in the substantia nigra. Brain Res 444: 67–74

    Article  PubMed  CAS  Google Scholar 

  • McLean S, Bannon MJ, Zamir N, Pert CB (1985) Comparison of the substance P- and dynorphin-containing projections to the substantia nigra: a radio-immunocytochemical and biochemical study. Brain Res 361: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Minamino N, Kangawa K, Fukuda A, Matsuo H, Lagarashi M (1980) A new opioid octapeptide related to dynorphin from porcine hypothalamus. Biochem Biophys Res Commun 95: 1475–1481

    Article  PubMed  CAS  Google Scholar 

  • Minamino N, Kangawa K, Chino N, Sakakibara S, Matsuo H (1981) Beta-neo- endorphin, a new hypothalamic “big” Leu-enkephalin of porcine origin: its purification and the complete amino acid sequence. Biochem Biophys Res Commun 99: 864–870

    Article  PubMed  CAS  Google Scholar 

  • Morelli M, Di Chiara CG (1985) Non-dopaminergic mechanisms in the turning behavior evoked by intranigral opiates. Brain Res 341: 350–359

    Article  PubMed  CAS  Google Scholar 

  • North RA (1986) Membrane conductances and opioid receptor subtypes. Natl Inst Drug Abuse Res Monogr Ser 71: 81–88

    CAS  Google Scholar 

  • Nylander I, Terenius L (1986) Chronic haloperidol and clozapine differentially affect dynorphin peptides and substance P in basal ganglia of the rat. Brain Res 380: 34–41

    Article  PubMed  CAS  Google Scholar 

  • Nylander I, Terenius LH (1987) Dopamine receptors mediate alterations in striatonigral dynorphin and substance P pathways. Neuropharmacology 26: 1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Peterson MR, Robertson HA (1984) Effect of dopaminergic agents on levels of dynorphin 1–8 in rat striatum. Prog Neuropsychopharmacol Biol Psychiatry 8: 725–728

    Article  PubMed  CAS  Google Scholar 

  • Petrie EC, Tiffany ST, Baker TB, Dahl JL (1982) Dynorphin (1–13): analgesia, hypothermia, cross-tolerance with morphine and beta-endorphin. Peptides 3: 41–47

    Article  PubMed  CAS  Google Scholar 

  • Przewlocki R, Shearman GT, Herz A (1983) Mixed opioid/nonopioid effects of dynorphin and dynorphin related peptides after their intrathecal injection in rats. Neuropeptides 3: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Qi JA, Bowen WD, Mosberg HI, Rothman RB, Porreca F (1990) Opioid agonist and antagonist antinociceptive properties of [D-Ala2,Leu5,Cys6]enkephalin: selective actions at the deltanoncomplexed site. J Pharmacol Exp Ther 255: 636–641

    PubMed  CAS  Google Scholar 

  • Quirion R, Gaudreau P, Martel JC, St Pierre S, Zamir N (1985) Possible interactions between dynorphin and dopaminergic systems in rat basal ganglia and substantia nigra. Brain Res 331: 358–362

    Article  PubMed  CAS  Google Scholar 

  • Robertson BC, Hommer DW, Skirboll LR (1987) Electrophysiological evidence for a non-opioid interaction between dynorphin and GABA in the substantia nigra of the rat. Neuroscience 23: 483–490

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Long JB, Bykov V, Jacobson AE, Rice KC, Holaday JW (1988) Beta- FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence. J Pharmacol Exp Ther 247: 405–416

    PubMed  CAS  Google Scholar 

  • Rothman RB, Mahboubi A, Bykov V, Kim CH, Jacobson AE, Rice KC (1991) Probing the opioid receptor complex with (+)-trans-superfit: I. Evidence that [D-Pen2,D-Pen5]enkephalin interacts with high affinity at the delta cx binding site. Peptides 12: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer AN, Yao YK, Gioannini TL, Hiller JM, Ofri D, Roques BP, Simon EJ (1990) Cross-linking of human [125I]beta-endorphin to opioid receptors in rat striatal membranes: biochemical evidence for the existence of a mu/delta opioid receptor complex. J Pharmacol Exp Ther 253: 419–426

    PubMed  CAS  Google Scholar 

  • Sei CA, Dores RM (1990) Changes in the processing of pro-dynorphin end products in the substantia nigra during neonatal development. Peptides 11: 89–94

    Article  PubMed  CAS  Google Scholar 

  • Seidah NG, Marcinkiewicz M, Benjannet S, Gaspar L, Beaubien G, Mattei MG, Lazure C, Mbikay M, Chrétien M (1991) Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, furin, and kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol Endocrinol 5: 111

    Article  PubMed  CAS  Google Scholar 

  • Seizinger BR, Höllt V, Herz A (1981a) Evidence for the occurrence of the opioid octapeptide dynorphin-(1–8) in the neurointermediate pituitary of rats. Biochem Biophys Res Commun 102: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Seizinger BR, Höllt V, Herz A (1981b) Immunoreactive dynorphin in the rat adenohypophysis consists exclusively of 6000 dalton species. Biochem Biophys Res Commun 103: 256–263

    Article  PubMed  CAS  Google Scholar 

  • Seizinger BR, Grimm C, Höllt V, Herz A (1984a) Evidence for a selective processing of proenkephalin B into different opioid peptide forms in particular regions of rat brain and pituitary. J. Neurochem 42: 447–457

    Article  PubMed  CAS  Google Scholar 

  • Seizinger BR, Höllt V, Herz A (1984b) Proenkephalin B (prodynorphin)-derived opioid peptides: evidence for a’differential processing in lobes of the pituitary. Endocrinology 115: 662–671

    Article  PubMed  CAS  Google Scholar 

  • Seizinger BR, Liebisch DC, Kish SJ, Arendt RM, Hornykiewicz O, Herz A (1986) Opioid peptides in Huntington’s disease: alterations in prodynorphin and proenkephalin system. Brain Res 378: 405–408

    Article  PubMed  CAS  Google Scholar 

  • Sivam SP (1989) Cocaine selectively increases striatonigral dynorphin levels by a dopaminergic mechanism. J Pharmacol Exp Ther 250: 818–824

    PubMed  CAS  Google Scholar 

  • Sivam SP, Takeuchi K, Li S, Douglass J, Civelli O, Calvetta L, Herbert E, McGinty JF, Hong JS (1988) Lithium increases dynorphin A(1–8) and prodynorphin mRNA levels in the basal ganglia of rats. Brain Res 427: 155–163

    PubMed  CAS  Google Scholar 

  • Smeekens SP, Avruch AS, Lemendola J, Chan SJ, Steiner DF (1991) Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci USA 88: 340–344

    Article  PubMed  CAS  Google Scholar 

  • Smiley PL, Johnson M, Bush L, Gibb JW, Hanson GR (1990) Effects of cocaine on extrapyramidal and limbic dynorphin systems. J Pharmacol Exp Ther 253: 938–943

    PubMed  CAS  Google Scholar 

  • Stevens CW, Yaksh TL (1986) Dynorphin. A and related peptides administered intrathecally in the rat: a search for putative kappa opiate receptor activity. J Pharmacol Exp Ther 238: 833–838

    PubMed  CAS  Google Scholar 

  • Suda M, Nakao K, Yoshimasa T, Ikeda Y, Sakamoto M, Yanaihara N, Numa S, Imura H (1983) A novel opioid peptide, leumorphin, acts as an agonist at the kappa opiate receptor. Life Sci 32: 2769–2775

    Article  PubMed  CAS  Google Scholar 

  • Taquet H, Javoy AF, Giraud P, Legrand JC, Agid Y, Cesselin F (1985) Dynorphin levels in parkinsonian patients: Leu5-enkephalin production from either proenkephalin A or prodynorphin in human brain. Brain Res 341: 390–392

    Article  PubMed  CAS  Google Scholar 

  • Thompson LA, Matsumoto RR, Hohmann AG, Walker JM (1990) Striatonigral prodynorphin: a model system for understanding opioid peptide function. Ann NY Acad Sci 579: 192–203

    Article  PubMed  CAS  Google Scholar 

  • Traynor JR (1987) Prodynorphin as a source of [Leu] enkephalin. Trends Pharmacol Sci 8: 47–48

    Article  CAS  Google Scholar 

  • Trujillo KA, Akil H (1989) Changes in prodynorphin peptide content following treatment with morphine or amphetamine: possible role in mechanisms of action of drug of abuse. Natl Inst Drug Abuse Res Monogr Ser 95: 550–551

    CAS  Google Scholar 

  • Trujillo KA, Akil H (1990a) Opioid and non-opioid behavioral actions of dynorphin A and the dynorphin analogue DAKLI. Natl Inst Drug Abuse Res Monogr Ser 105: 397–398

    CAS  Google Scholar 

  • Trujillo KA, Akil H (1990b) Pharmacological regulation of striatal prodynorphin peptides. Prog Clin Biol Res 328: 223–226

    PubMed  CAS  Google Scholar 

  • Trujillo KA, Day R, Akil H (1990) Regulation of striatonigral prodynorphin peptides by dopaminergic agents. Brain Res 518: 244–256

    Article  PubMed  CAS  Google Scholar 

  • Tulunay FC, Jen MF, Chang JK, Loh HH, Lee NM (1981a) Possible regulatory role of dynorphin on morphine- and beta-endorphin-induced analgesia. J Pharmacol Exp Ther 219: 296–298

    PubMed  CAS  Google Scholar 

  • Tulunay FC, Jen MF, Chang JK, Loh HH, Lee NM (1981b) Possible regulatory role of dynorphin-(1–13) on narcotic-induced changes in naloxone efficacy. Eur J Pharmacol 76: 235–239

    Article  PubMed  CAS  Google Scholar 

  • Vaswani KK, Richard CW, Tejwani GA (1988) Cold swim stress-induced changes in the levels of opioid peptides in the rat CNS and peripheral tissues. Pharmacol Biochem Behav 29: 163–168

    Article  PubMed  CAS  Google Scholar 

  • Vincent S, Hokfelt T, Christensson I, Terenius L (1982a) Immunohistochemical evidence for a dynorphin immunoreactive striatonigral pathway. Eur J Pharmacol 85: 251–252

    Article  PubMed  CAS  Google Scholar 

  • Vincent SR, Hokfelt T, Christensson I, Terenius L (1982b) Dynorphin- immunoreactive neurons in the central nervous system of the rat. Neurosci Lett 33: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Katz RJ, Akil H (1980) Behavioral effects of dynorphin 1–13 in the mouse and rat: initial observations. Peptides 1: 341–345

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Moises HC, Coy DH, Baldrighi G, Akil H (1982a) Nonopiate effects of dynorphin and des-Tyr-dynorphin. Science 218: 1136–1138

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Moises HC, Coy DH, Young EA, Watson SJ, Akil H (1982b) Dynorphin (1–17): lack of analgesia but evidence for non-opiate electrophysiological and motor effects. Life Sci 31: 1821–1824

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Tucker DE, Coy DH, Walker BB, Akil H (1982c) Des-tyrosine- dynorphin antagonizes morphine analgesia. Eur J Pharmacol 85: 121–122

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Moises HC, Friederich MW (1985) A review of some nonopioid actions of dynorphin. Prog Clin Biol Res 192: 309–312

    PubMed  CAS  Google Scholar 

  • Watson SJ, Khachaturian H, Akil H, Coy DH, Goldstein A (1982) Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science 218: 1134–1136

    Article  PubMed  CAS  Google Scholar 

  • Watson SJ, Khachaturian H, Taylor L, Fischli W, Goldstein A, Akil H (1983) Prodynorphin peptides are found in the same neurons throughout rat brain: immunocytochemical study. Proc Natl Acad Sci USA 80: 891–894

    Article  PubMed  CAS  Google Scholar 

  • Watson SJ, Trujillo KA, Herman JP, Akil H (1989) Neuroanatomical and neurochemical substrates of drug-seeking behavior: overview and future directions. In: Goldstein A (ed) Molecular and cellular aspects of the addictions. Springer, Berlin Heidelberg New York, pp 29–91

    Chapter  Google Scholar 

  • Weber E, Evans CJ, Barchas JD (1982a) Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature 299: 77–79

    Article  PubMed  CAS  Google Scholar 

  • Weber E, Evans CJ, Chang JK, Barchas JD (1982b) Brain distribution of a-neo- endorphin and b-neo-endorphin: evidence for regional processing differences. Biochem Biophys Res Comm 108: 81–88

    Article  PubMed  CAS  Google Scholar 

  • Weissman BA, Zamir N (1987) Differential effects of heroin on opioid levels in the rat brain. Eur J Pharmacol 139: 121–123

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1983a) Opioid peptides selective for mu and delta receptors reduce calcium dependent action potentials by increasing potassium conductance. Neurosci Lett 42: 173–178

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1983b) Opioid peptides with differential affinity for mu and delta receptors decrease sensory neuron calcium-dependent action potentials. J Pharmacol Exp Ther 227: 394–402

    PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1984a) Dynorphin reduces calcium-dependent action potential duration by decreasing voltage-dependent calcium conductance. Neurosci Lett 46: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1984b) Dynorphin reduces voltage-dependent calcium conductance of mouse dorsal root ganglion neurons. Neuropeptides 5: 253–256

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1985) Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration. J Pharmacol Exp Ther 234: 49–56

    PubMed  CAS  Google Scholar 

  • Woo SK, Tulunay FC, Loh HH, Lee NM (1983) Effect of dynorphin-(1–13) and related peptides on respiratory rate and morphine-induced respiratory rate depression. Eur J Pharmacol 96: 117–122

    Article  PubMed  CAS  Google Scholar 

  • Xie GX, Goldstein A (1987) Characterization of big dynorphins from rat brain and spinal cord. J Neurosci 7: 2049–2055

    PubMed  CAS  Google Scholar 

  • Young EA, Walker JM, Houghten R, Akil H (1987) The degradation of dynorphin A in brain tissue in vivo and in vitro. Peptides 8: 701–707

    Article  PubMed  CAS  Google Scholar 

  • Zamir N (1985) On the origin of Leu-enkephalin and Met-enkephalin in the rat neurohypophysis. Endocrinology 117: 1687–1692

    Article  PubMed  CAS  Google Scholar 

  • Zamir N, Palkovits M, Weber E, Mezey E, Brownstein MJ (1984a) A dynorphinergic pathway of Leu-enkephalin production in rat substantia nigra. Nature 307: 643–645

    Article  PubMed  CAS  Google Scholar 

  • Zamir N, Skofitsch G, Bannon MJ, Helke CJ, Kopin IJ, Jacobowitz DM (1984b) Primate model of Parkinson’s disease: alterations in multiple opioid systems in the basal ganglia. Brain Res 322: 356–360

    Article  PubMed  CAS  Google Scholar 

  • Zamir N, Weber E, Palkovits M, Brownstein M (1984c) Differential processing of prodynorphin and proenkephalin in specific regions of the rat brain. Proc Natl Acad Sci USA 81: 6886–6889

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Day, R., Trujillo, K.A., Akil, H. (1993). Prodynorphin Biosynthesis and Posttranslational Processing. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids. Handbook of Experimental Pharmacology, vol 104 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77460-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77460-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77462-1

  • Online ISBN: 978-3-642-77460-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics