Skip to main content

Gene Transfer in Human and Animals Gut

  • Conference paper
Gene Transfers and Environment
  • 180 Accesses

Abstract

Genetic exchanges between procaryotes are mediated mainly by extrachromosomal elements, plasmids and phages. Horizontal gene exchanges can occur by conjugation, transduction or transformation. Conjugation and transduction are the must likely mechanisms of transfer between closely related species. Introduction of foreign DNA into phylogenetically remote organisms is at present performed in laboratory by means of transformation or transfection. Within the framework of the genome, movements of certain sequences and DNA rearrangement are due to transposable elements (transposons). These are responsible for plasmid and bacterial evolution. There is evidence that heterogramic genetic exchanges have occurred under natural conditions (Lambert et al. 1985; Trieu-Cuot et al. 1985; Trieu-Cuot and Courvalin 1986; Brisson-Noäl et al. 1988). Genes originating in Gram-positive bacteria are readily expressed and selected in Gram-negative bacteria; the reversal polarity of exchange is performed only in laboratory with vectors. Concerning gene transfer in the gut, one have to consider gene flux between the microorganisms that colonize the gut and between procaryotes and eucaryotes. Rapid degradation of DNA in gut lumen (Maturin and Curtis 1977; Hoskins 1978), suggests that genetic exchange by direct insertion of naked DNA is unlikely between eucaryotic host cells and enteric microflora in gut lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson ES (1975) Viability of, and transfer of a plasmid from E.coli K-12 in human intestine. Nature (London) 255:502–504

    Article  CAS  Google Scholar 

  • Anderson JD (1975) Factors that may prevent transfer of antibiotic resistance between Gram-negative bacteria in the gut. J Med Microbiol 8:83–88

    Article  PubMed  CAS  Google Scholar 

  • Anderson JD, Gillespie WA, Richmond MH (1973) Chemotherapy and antibiotic-resistance transfer between enterobacteria in the human gastro-intestinal tract. J Med Microbiol 6:461–473

    Article  PubMed  CAS  Google Scholar 

  • Ando A, Furuse K, Watanabe I (1979) Propagation of ribonucleic acid coliphages in gnotobiotic mice. Appi Environ Microbiol 37:1157–1165

    CAS  Google Scholar 

  • Andremont A, Gerbaud G, Tancrède C, Courvalin P (1985) Plasmid-mediated susceptibility to intestinal antagonisms in Escherichia coli. Infect Immun 49:751–755

    PubMed  CAS  Google Scholar 

  • Brefort G, Magot M, Ionesco H, Sebald M (1977) Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1:52–66

    Article  PubMed  CAS  Google Scholar 

  • Brisson-Noël A, Arthur M, Courvalin P (1988) Evidence for natural gene transfer from Gram-positive cocci to Escherichia coli. J Bacteriol 170:1739–1745

    PubMed  Google Scholar 

  • Cohen PS, Laux DC (1985) E.coli colonization of the mammalian colon: understanding the process. Recomb DNA Tech Bull 8:51–54

    PubMed  CAS  Google Scholar 

  • Cohen PS, Pilsucki RW, Myhal ML, Rosen CA, Laux DC, Cabelli VJ (1979) Colonization potentials of male and female E. coli K-12 strains, E. coli B, and human faecal E. coli strains in the mouse Gl tract. Recomb DNA Tech Bull 2:106–113

    Google Scholar 

  • Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A, and Courvalin P (1991) Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 35:185–187

    PubMed  CAS  Google Scholar 

  • Ducluzeau R, Gallinha A (1967) Recombinaison in vivo entre une souche Hfr et une souche F de Escherichia coli K-12 encemencées dans le tube digestif de souris axéniques. C R Acad Sci Paris 264:177–179

    CAS  Google Scholar 

  • Duval-Ifiah Y (1972) Recombinaison in vivo et in vitro entre phages de Staphylococcus pyogenes. C R Acad Sci Paris 275:3035–3038

    Google Scholar 

  • Duval-Iflah Y, Gruzza M (1990) Use of germ-free mice in the study of gene transfer from genetically modified lactic bacteria. Commission of the European Communities: Biotechnology Action Programme, Sectorial Meeting on Risk Assessment, Padova, Italy

    Google Scholar 

  • Duval-Iflah Y, Ouriet MF, Moreau C, Daniel N, Gabillan JC Raibaud P (1982) Implantation précoce d’une souche de Escherichia coli dans l’intestin de nouveaux-nés humains: effet de barrière vis-à-vis de souches de E. coli antibiorésistants. Ann Microbiol (Institut Pasteur) 133 A:393–408

    Google Scholar 

  • Duval-Iflah Y, Raibaud P, Rousseau M (1981) Antagonisms among isogenic strains of Escherichia coli in the digestive tracts of gnotobiotic mice. Infect Immun 34:957–969

    PubMed  CAS  Google Scholar 

  • Duval-Iflah Y, Raibaud P, Tancrède C, Rousseau M (1980) R-plasmid transfer from Serratia liquefaciens to Escherichia coli in vitro and in vivo in the digestive tract of gnotobiotic mice associated with human faecal flora. Infect Immun 28:981–990

    PubMed  CAS  Google Scholar 

  • Farrar WE, Jr, Edison M, Guerry P, Falkow S, Drusin LM, Roberts RB (1972) Interbacterial transfer of R factor in the human intestine: In vivo acquisition of R-factor-mediated kanamycin resistance by a multiresistant strain of Shigella sonnei. J Infect Dis 126:27–33

    Article  PubMed  Google Scholar 

  • Franke AE, Clewell DB (1981) Evidence for conjugal transfer of a Streptococcus faecalis transposon (Tn916) in the absence of Plasmid DNA. Cold Spring Harbor Symp Quant Biol 45:77–80

    PubMed  CAS  Google Scholar 

  • Freter R, Freter RR, Brickner H (1983) Experimental and mathematical models of Escherichia coli plasmid transfer in vitro and in vivo. Infect Immun 39:60–84

    PubMed  CAS  Google Scholar 

  • Gruzza M, Duval-Iflah Y, Ducluzeau (1990) In vivo establishment of genetically engineered Lactococci in gnotobiotic mice; plasmid transfer to Enterococcs faecalis. Proceedings of the 10th International Symposium on Gnotobiology, Leiden, The Netherlands. In press

    Google Scholar 

  • Guinée PAM (1965) Transfer of multiple drug resistance from Escherichia coli to Salmonella typhimurium in the mouse intestine. Antonie van Leeuwenhoek 31:314–322

    Article  PubMed  Google Scholar 

  • Guinée PAM (1968) R transfer to S. Panama in vitro and in vivo. Antonie van Leeuwenhoek 34:93–98

    Article  PubMed  Google Scholar 

  • Guinée PAM (1970) Resistance transfer to the resident intestinal Escherichia coli of rats. J Microbiol 102:291–292

    Google Scholar 

  • Gyles C, Falkow S, Rollins L (1978) In vivo transfer of an Escherichia coli enterotoxin plasmid possessing genes for drug resistance. Am J Vet Res 39:1438–1441

    PubMed  CAS  Google Scholar 

  • Hoskins LC (1978) Host and microbial DNA in the gut lumen. J Infect Dis 137:694–703

    Article  PubMed  CAS  Google Scholar 

  • Jones RT, Curtis R, III (1970) Genetic exchange between Escherichia coli strains in the mouse intestine. J Bacteriol 103:71–80

    PubMed  CAS  Google Scholar 

  • Kasuya M (1964) Transfer of drug resistance between enteric bacteria induced in the mouse intestine. J Bacteriol 88:322–328

    PubMed  CAS  Google Scholar 

  • Lambert T, Gerbaud G, Trieu-Cuot P, Courvalin P (1985) Structural relationship between the genes encoding 3’-aminoglycoside phosphotransferases in Campylobacter and in Gram-positive cocci. Ann Microbiol (Institut Pasteur) 136B:135–150

    Article  CAS  Google Scholar 

  • Laux DC, Cabelli VJ, Cohen PS (1982) The effect of plasmid gene expression on the colonizing ability of E.coli HS in mice. Recomb DNA Tech Bull 5:1–5

    PubMed  CAS  Google Scholar 

  • Levy SB (1984) Survival of plasmids in Escherichia coli. In “Genetic Manipulation: Impact on Man and Society” (Arber W, Illmensee K, Peacock J, Starlinger P, eds), pp 19–28 ICSU Press, Paris

    Google Scholar 

  • Levy SB, Marshall B (1979) Survival of E. coli host-vector systems in the human intestinal tract. Recomb DNA Tech Bull 2:77–80

    Google Scholar 

  • Levy SB, Marshall B, Rowse-Eagle D (1980) Survival of Escherichia coli host-vector systems in the mammalian intestine. Science 209:391–394

    Article  PubMed  CAS  Google Scholar 

  • Marshall B, Schluederberg S, Tachibana C, Levy SB (1981) Survival and transfer in the human gut of poorly mobilizable (pBR322) and of transferable plasmids from the same carrier E.coli. Gene 14:145–154

    Article  PubMed  CAS  Google Scholar 

  • Maturin L, Sr, and Curtiss R, III (1977) Degradation of DNA by nucleases in intestinal tract of rats. Science 196:216–218

    Article  PubMed  CAS  Google Scholar 

  • Morelli L, Sarra PG, Bottazzi V (1988) In vivo transfer of pAMßl from Lactococcus reuteri to Enterococcus faecalis. J Appi Bacteriol 65:371–375

    Article  CAS  Google Scholar 

  • Myhal ML, Laux DC, Cohen PS (1982) Relative colonizing abilities of human faecal and K-12 strains of Escherichia coli in the large intestines of streptomycin-treated mice. Eur J Clin Microbiol 1:186–192

    Article  PubMed  CAS  Google Scholar 

  • Petrocheilou V, Grinsted J, Richmond MH (1976) R-plasmid transfer in vivo in the absence of antibiotic selection pressure. Antimicrob Agents Chemother 10:753–761

    PubMed  CAS  Google Scholar 

  • Sansonetti P, Lafont JP, Jaffé-Brachet A, Guillot JF, Chaslus-Dancla E (1980) Parameters controlling interbacterial plasmid spreading in a gnotobiotic chicken gut system: influence of plasmid and bacterial mutations. Antimicrob Agents Chemother 17:327–333

    PubMed  CAS  Google Scholar 

  • Sears HJ, Brownlee I, Uchiyama JK (1950) Persistence of individual strains of Escherichia coli in the intestinal tract of man. J Bacteriol 59:293–301

    PubMed  CAS  Google Scholar 

  • Smith C, Jr, Milewski E, Martin MA (1985) The effect of colonizing mice with laboratory and wild type strains of E. coli containing tumor virus genomes. Recomb DNA Tech Bull 8:47–51

    PubMed  Google Scholar 

  • Smith HW (1969) Transfer of antibiotic resistance from animal and human strains of Escherichia coli to resident E. coli in the alimentary tract of man. Lancet 1:1174–1176.

    Article  PubMed  CAS  Google Scholar 

  • Smith HW, (1971) Observations on in vivo transfer of R-factors. Ann NY Acad Sci 182:80–90

    Article  PubMed  CAS  Google Scholar 

  • Smith HW (1975) Survival of orally administered E.coli K-12 in alimentary tract of man. Nature (London) 255:500–502

    Article  CAS  Google Scholar 

  • Trieu-Cuot P, Courvalin P (1986) Evolution and transfer of aminoglycoside resistance genes under natural conditions. J Antimicrob Chemother 18:93–102

    Article  PubMed  CAS  Google Scholar 

  • Trieu-Cuot P, Gerbaud G, Lambert T, Courvalin P (1985) In vivo transfer of genetic information between Gram-positive and Gram-negative bacteria. The EMBO J 4:3583–3587

    CAS  Google Scholar 

  • Wells CL, Johnson WJ, Kan CM, Balish E (1978) Inhability of debilitated Escherichia coli X1776 to colonize germ-free rodents. Nature (London) 274:397

    Article  CAS  Google Scholar 

  • Williams PH (1977) Plasmid tranfer in the human alimentary tract. FEMS Microbiol Lett 2:91–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duval-Iflah, Y. (1992). Gene Transfer in Human and Animals Gut. In: Gauthier, M.J. (eds) Gene Transfers and Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77450-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77450-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77452-2

  • Online ISBN: 978-3-642-77450-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics