Skip to main content

Hepatic Parenchymal and Nonparenchymal Cells in Hemorrhage and Ischemia

  • Chapter
Host Defense Dysfunction in Trauma, Shock and Sepsis
  • 19 Accesses

Abstract

Although it is widely accepted that ischemia can make a major contribution to organ dysfunction in trauma, shock, and sepsis, the exact mechanisms remain unclear. Since ischemia is, by definition, an imbalance between blood (or oxygen) supply and demand one might predict that susceptibility to ischemia damage might be well modeled by anoxia to parenchymal cells. However, in intact organs, the presence of multiple cell types complicates the response to an ischemic insult. This response is even more complicated when ischemia is followed by reperfusion which exacerbates the injury in intact organs. For instance, vascular endothelial cells have been shown to contain large quantities of xanthine dehydrogenase that can be converted to xanthine oxidase and anoxic stress resulting in the production of oxygen-derived free radicals during reoxygenation [1]. Indeed, in organs such as the heart, such “oxyradicals” of endothelial origin are likely to be major contributors to reperfusion injury [2]. In the liver the situation is further complicated by the presence of a substantial number of macrophages, the hepatic Kupffer cells, and during in vivo reperfusion infiltration by neutrophils which can then constitute a significant population of nonparenchymal cells. Thus, the purpose of this paper is to review the relative susceptibility to ischemic or anoxic injury of hepatocytes and the intact liver.

This work was supported by USPHS grant DK38201 and the Robert Garrett Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ratych RE, Chuknyiska RS, Bulkley GB (1987) The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery 102:122–131

    PubMed  CAS  Google Scholar 

  2. Jarasch ED, Bruder G, Heid HW (1986) Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol Scand 548:39–46

    CAS  Google Scholar 

  3. Noll T, deGroot H, Wisseman P (1986) A computer-supported oxystat system maintaining steady-state O2 partial pressures and simultaneously monitoring O2 uptake in biological systems. Biochem J 236:765–769

    PubMed  CAS  Google Scholar 

  4. DeGroot H, Littauer A (1989) Hypoxia, reactive oxygen, and cell injury. Free Radic Biol Med 6:541–551

    Article  CAS  Google Scholar 

  5. Herman B, Nieminen A-L, Gores GJ, Lemasters JJ (1988) Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability. FASEB J 2:146–151

    PubMed  CAS  Google Scholar 

  6. Lemaster JJ, DiGuiseppi J, Nieminen A-L, Herman B (1987) Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature 325:78–81

    Article  Google Scholar 

  7. Koo A, Liang IYS (1977) Blood flow in hepatic sinusoids in experimental hemorrhagic shock in the rat. Microvasc Res 13:315–325

    Article  PubMed  CAS  Google Scholar 

  8. Lautt WW, McQuaker JE (1989) Maintenance of hepatic arterial blood flow during hemorrhage is mediated by adenosine. Can J Physiol Pharmacol 67:1023–1028

    Article  PubMed  CAS  Google Scholar 

  9. Pearce FJ, Drucker WR (1986) Relationship of portal flow and hepatic arterial flow to ATP content during hemorrhagic shock. Surg Forum 37:81–83

    CAS  Google Scholar 

  10. Chaudry IH, Sayeed MM, Baue AE (1974) Depletion and restoration of tissue ATP in hemorrhagic shock. Arch Surg 108:208

    Article  PubMed  CAS  Google Scholar 

  11. Jungermann K, Katz N (1989) Functional specialization of different hepatocyte populations. Physiol Rev 69:708–764

    PubMed  CAS  Google Scholar 

  12. Marotto ME, Thurman RG, Lemasters JJ (1988) Early midzonal cell death during low-flow hypoxia in the isolated, perfused rat liver: protection by allopurinol. Hepatology 8: 585–590

    Article  PubMed  CAS  Google Scholar 

  13. Anundi I, deGroot H (1989) Hypoxic liver cell death: critical PO2 and dependence of viability on glycolysis. Am J Physiol 257:G58–G64

    PubMed  CAS  Google Scholar 

  14. Bradford BU, Marotto M, Lemasters JJ, Thurman RG (1986) New, simple models to evaluate zone-specific damage due to hypoxia in the perfused rat liver: time course and effect of nutritional state. J Pharmacol Exp Ther 236:263–268

    PubMed  CAS  Google Scholar 

  15. Hirawasa H, Chaudry IH, Baue AE (1978) Improved hepatic function and survival with adenosine triphosphate-magnesium chloride after hepatic ischemia. Surgery 83:655–662

    Google Scholar 

  16. Gores GJ, Nieminen A-L, Fleishman KE, Dawson TL, Herman B, Lemaster JJ (1988) Extracellular acidosis delays onset of cell death in ATP-depleted hepatocytes. Am J Physiol 255:C315–C322

    PubMed  CAS  Google Scholar 

  17. Clemens MG, McDonagh PF, Chaudry IH, Baue AE (1985) Hepatic microcirculatory failure following ischemia and reperfusion: improvement with ATP-MgCl2 treatment. Am J Physiol H804–H811

    Google Scholar 

  18. Drugas GT, Paidas CN, Yahanda AM, Ferguson D, Clemens MG (1991) Conjugated desferoxamine attenuates hepatic microvascular injury following ischemia/reperfusion. Circ Shock (in Press)

    Google Scholar 

  19. Bouwens L, Geerts A, van Bossuyt H, Wisse E (1987) Recent insights into the function of hepatic sinusoidal cells. Neth J Med 31:129–148

    PubMed  CAS  Google Scholar 

  20. Meszaros K, Bojta J, Bautista AP, Lang CH, Spitzer JJ (1991) Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver. Am J Physiol 260:G7–G12

    PubMed  CAS  Google Scholar 

  21. Jones EA, Summerfield JA (1988) Kupffer cells. In Arias IM, Popper H, Jakoby WB, Schachter D, Shafritz DA (eds) The liver. Biology and pathobiology, 2nd edn. Raven, New York, pp 683–704

    Google Scholar 

  22. Birmelin M, Decker K (1984) Synthesis of prostanoids and cyclic nucleotides by phagocytosing rat Kupffer cells. Eur J Biochem 142:219–225

    Article  PubMed  CAS  Google Scholar 

  23. Dieter P, Schulze-Specking A, Decker K (1986) Differential inhibition of prostaglandin and superoxide production by dexamethasone in primary cultures of rat Kupffer cells. Eur J Biochem 159:451–457

    Article  PubMed  CAS  Google Scholar 

  24. Ouwendyk RJTH, Zijlstra FJ, van der Broek AMWC, Brouwer A, Wilson JHP, Vincent JE (1988) Comparison of the production of eicosanoids by human and rat peritoneal macrophages and rat Kupffer cells. Prostaglandins 35:437–446

    Article  Google Scholar 

  25. Braciak TA, Gauldie J, Fey GH, Northemann W (1991) The expression of interleukin-6 by a rat macrophage-derived cell line. FEBS Lett 280:277–280

    Article  PubMed  CAS  Google Scholar 

  26. Dieter P, Altin JG, Decker K, Bygrave FL (1987) Possible involvement of eicosanoids in the zymosan and arachidonic-acid-induced oxygen uptake, glycogenosis and Ca2+ mobilization in the perfused rat liver. Eur J Biochem 165:455–460

    Article  PubMed  CAS  Google Scholar 

  27. Buxton DB, Fisher RA, Briseno DL, Hanahan DJ, Olson MS (1987) Glycogenolytic and haemodynamic responses to heat-aggregated immunoglobulin G and prostaglandin E2 in the perfused rat liver. Biochem J 243:493–498

    PubMed  CAS  Google Scholar 

  28. West MA, Keller GA, Hyland BJ, Cerra FB, Simmons RL (1986) Further characterization of Kupffer cell/macrophage-mediated alterations in hepatocyte protein synthesis. Surgery 100:416–423

    PubMed  CAS  Google Scholar 

  29. Dieter P, Altin JG, Bygrave FL (1987) Possible involvement of prostaglandins in vasoconstriction induced by zymosan and arachidonic acid in the perfused rat liver. FEBS Lett 213:174–178

    Article  PubMed  CAS  Google Scholar 

  30. McCuskey RS, Urbaschek R, McCuskey PA, Urbaschek B (1983) In vivo microscopic observations of the responses of Kupffer cells and the hepatic microcirculation to mycobacterium bovis BCG alone and in combination with endotoxin. Infect Immunol 142:362–368

    Google Scholar 

  31. Jaeschke H, Farhood A (1991) Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol 260:G355–G362

    PubMed  CAS  Google Scholar 

  32. Kobayashi S, Clemens MG (1989) Exacerbation of hepatocyte reoxygenation injury by Kupffer cells. FASEB J 1:A711

    Google Scholar 

  33. Kobayashi S, Clemens MG (1989) Role of free radicals in Kupffer cell exacerbation of hepatocyte reoxygenation injury. Circ Shock 98:331–332

    Google Scholar 

  34. Ayala A, Perrin MM, Chaudry IH (1990) Increased susceptibility to sepsis following hemorrhage: defective Kupffer cell-midiated antigen presentation. Surg Forum 40:102

    Google Scholar 

  35. Ayala A, Perrin MM, Wang P, Ertel W, Chaudry IH (1991) Enhanced Kupffer cell cytotoxic activity following hemorrhage: a potential cause of hepatocellular injury. (this volume)

    Google Scholar 

  36. Clemens MG, Paidas C, Wright J, McDonagh P (1989) Lack of evidence for leukocyte plugging of liver microvessels during reperfusion following ischemia. FASEB J 2:A1382

    Google Scholar 

  37. Jaeschke H, Farhood A, Smith CW (1990) Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J 4:3355–3359

    PubMed  CAS  Google Scholar 

  38. Takei Y, Marzi I, Gao W, Gores GJ, Lemasters JJ, Thurman RG (1991) Leukocyte adhesion and cell death following orthotopic liver transplantation in the rat. Transplantation 51:959–965

    Article  PubMed  CAS  Google Scholar 

  39. Miescher E, Drugas GT, Biewer J, Clemens MG (1990) Distribution of white blood cell accumulation in rat liver during post-ischemic reperfusion. Circ Shock 31:79

    Google Scholar 

  40. Harlan JM (1987) Neutrophil-mediated vascular injury. Acta Med Scand 715:123–129

    CAS  Google Scholar 

  41. Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger DN (1987) Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol 253:H699–H703

    PubMed  CAS  Google Scholar 

  42. Clemens MG, McDonagh PF, Reynolds JM (1986) Leukocyte/platelet dependence of ischemia-induced hepatic microvascular damage. Fed Proc 46:1524

    Google Scholar 

  43. Barroso-Aranda J, Schmidt-Schönbein GW, Zweifach BW, Engler RL (1988) Granulocytes and no reflow phenomenon in irreversible hemorrhagic shock. Circ Res 63:437–447

    PubMed  CAS  Google Scholar 

  44. Ferguson D, Biewer J, Clemens MG (1990) Spatial correlation between leukocyte accumulation and red cell velocity during reperfusion after hepatic ischemia. FASEB J:A1251

    Google Scholar 

  45. Kubes P, Suzuki M, Granger DN (1990) Modulation of PAF-induced leukocyte adherence and increased microvascular permeability. Am J Physiol 259:G859–G864

    PubMed  CAS  Google Scholar 

  46. Stock RJ, Cilento EV, McCuskey RS (1989) A quantitative study of fluorescein isothiocyanatedextran transport in the microcirculation of the isolated perfused rat liver. Hepatology 9:75–82

    Article  PubMed  CAS  Google Scholar 

  47. Marzi I, Bauer C, Hower R, Menger M, Trentz O, Bühren V (1991) Deleterious effect of dexamethansone on hepatic microcirculation and leukocyte-endothelial interaction in hemorrhagic shock. (this volume)

    Google Scholar 

  48. Perry MA, Granger DN (1991) Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interaction in cat mesenteric venules. J Clin Invest 87:1798–1804

    Article  PubMed  CAS  Google Scholar 

  49. Barroso-Aranda J, Schmidt-Schönbein GW (1989) Transformation of neutrophils as indicator of irreversibility in hemorrhagic shock. Am J Physiol 257:H846–H852

    PubMed  CAS  Google Scholar 

  50. Colletti LM, Burtch GD, Remick DG, Kunkel SL, Strieter RM, Guice KS, Oldham KT, Campbell DA Jr (1990) The production of tumor necrosis factor alpha and the development of a pulmonary capillary injury following hepatic ischemia/reperfusion. Transplantation 49:268–272

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag, Berlin Heidelberg

About this chapter

Cite this chapter

Clemens, M.G. (1993). Hepatic Parenchymal and Nonparenchymal Cells in Hemorrhage and Ischemia. In: Faist, E., Meakins, J.L., Schildberg, F.W. (eds) Host Defense Dysfunction in Trauma, Shock and Sepsis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77405-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77405-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77407-2

  • Online ISBN: 978-3-642-77405-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics