Skip to main content

Kinetic Studies on Fluorescence Probes Using Synchrotron Radiation

  • Chapter
Fluorescence Spectroscopy

Abstract

Many flexible aromatic molecules undergo spontaneous intramolecular rotational relaxation processes in the excited state leading to an energy minimum far away from the initial geometry which thus can be termed a photochemical product. Because the process occurs entirely in the excited state, it is called an “adiabatic photoreaction” [1]. An experimentally very well-studied example is the double-bond twisting of excited stilbene [2]. In recent years, the family of the Twisted Intramolecular Charge Transfer (TICT) compounds has been developed to a great extent [3–6]. In these compounds, two aromatic moieties are linked by a single bond, and excited-state rotational relaxation occurs towards a twisted conformation, coupled with intramolecular electron transfer (Fig. 4.1). Modern theoretical concepts can describe the twisting of both double and single bonds in one and the same model, that of biradicaloid states [6–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turro NJ, McVey J, Ramamurthy V, Lechtken P (1979) Angew Chem 91: 597

    Article  CAS  Google Scholar 

  2. Waldeck DH (1991) Chem Rev 91: 415

    Article  CAS  Google Scholar 

  3. Grabowski ZR, Rotkiewicz K, Siemiarczuk A, Cowley DJ, Baumann W (1979) Nouv J Chim 3: 443

    CAS  Google Scholar 

  4. Rettig W (1986) Angew Chemie 98: 969; Angew Chem Internat Ed Engl 25: 971

    Article  Google Scholar 

  5. Lippert E, Rettig W, Bonacic-Koutecky V, Heisel F, Miehé JA (1987) Adv Chem Phys 68: 1

    Article  CAS  Google Scholar 

  6. Rettig W (1991) EPA newsletter 41: 3

    CAS  Google Scholar 

  7. Michl J, Bonacic-Koutecky V (1990) Electronic aspects of organic photochemistry, Wiley, New York

    Google Scholar 

  8. Rettig W (1988) In: Liebman J, Greenberg A (eds) Modern Models of Bonding and Derealization. VCH-Publishers, New York, p 229 (Molecular Structure and Energetics vol 6)

    Google Scholar 

  9. Soini E, Hemmilä I (1979) Clin Chem 25: 353

    CAS  Google Scholar 

  10. Birks JB (1970) Photophysics of aromatic molecules. Wiley, London, chap 7

    Google Scholar 

  11. Beens H, Weiler A (1975) In: Birks JB (ed) Organic molecular photophysics, vol 2. Wiley, London, chap 4

    Google Scholar 

  12. Grabowska A, Waluk J, Bulska H, Mordzinski A (1986) Nouv J Chim 10: 413

    Google Scholar 

  13. Rettig W, Fritz R, Springer J (1991) In: K. Honda, N. Kitamura, H. Masuhara, T. Ikeda, M. Sisido, MA Winnik (eds) Photochemical Processes in Organized Molecular Systems, Elsevier, Amsterdam

    Google Scholar 

  14. Bulska H (1988) J Lumin 39: 293

    Article  CAS  Google Scholar 

  15. Jahn B, Dreeskamp H (1984) Ber Bunsenges Phys Chem 88: 42

    CAS  Google Scholar 

  16. Lakowicz JR (1983) Principles of Fluorescence Spectra. Plenum, New York

    Google Scholar 

  17. Rettig W (1991) Nachrichten aus Chemie Technik Laboratorium 39: 398

    CAS  Google Scholar 

  18. Rettig W, Majenz W, Lapouyade R, Haucke G (1992) J Photochem Photobiol A: Chemistry 62: 415

    CAS  Google Scholar 

  19. Rettig W, Vogel M, Klock A (1986) EPA newsletter 27: 41

    CAS  Google Scholar 

  20. Rettig W, Wiggenhauser H, Hebert T, Ding A (1989) Nuclear Instruments and Methods in Physics Research, A277: 677

    CAS  Google Scholar 

  21. O’Connor DV, Phillips D (1984) Time-correlated Single Photon Counting. Academic, London

    Google Scholar 

  22. Vogel M, Rettig W (1987) Ber Bunsenges Phys Chem 91: 1241

    CAS  Google Scholar 

  23. Rettig W, Vogel M, Lippert E, Otto H (1986) Chem Phys 103: 381

    Article  Google Scholar 

  24. Wermuth G, Rettig W, Lippert E (1981) Ber Bunsenges Phys Chem 85: 64

    CAS  Google Scholar 

  25. Rettig W, Wermuth G (1985) J Photochem 28: 351

    Article  CAS  Google Scholar 

  26. Rettig W (1992) In: Malaga N, Okada T, Mosukara H (eds) Dynamics and Mechanisms of Photoinduced Electron Transfer and related Phenomena. Elsevier, Amsterdam, p. 57

    Google Scholar 

  27. Rettig W, Zander M (1982) Chem Phys Lett 87: 229

    Article  CAS  Google Scholar 

  28. Rettig W, Marschner F (1990) New J Chem 14: 819

    CAS  Google Scholar 

  29. Rettig W, Majenz W (1989) Chem Phys Lett 154: 335

    Article  CAS  Google Scholar 

  30. Rettig W, Majenz W, Lapouyade R, Vogel M (1992) Proceedings Ibaraki Symposium, Tsukuba/Japan, May 1991, J Photochem Photobiol. A: Chemistry, in press

    Google Scholar 

  31. Vogel M, Rettig W (1985) Ber Bunsenges Phys Chem 89: 962

    CAS  Google Scholar 

  32. Rettig W (1988) Appl Phys B45: 145

    CAS  Google Scholar 

  33. Vogel M, Rettig W, Sens R, Drexhage KH (1988) Chem Phys Lett 147:452

    Article  CAS  Google Scholar 

  34. Vogel M, Rettig W, Sens R, Drexhage KH (1988) Chem Phys Lett 147: 461

    Article  CAS  Google Scholar 

  35. Vogel M, Rettig W, Fiedeldei U, Baumgärtel H (1988) Chem Phys Lett 148: 347

    Article  CAS  Google Scholar 

  36. Tredwell CJ, Osborne AD (1980) J Chem Soc Faraday II, 76: 1627;

    Google Scholar 

  37. Osborne AD, Winkworth AC (1982) Chem Phys Lett 85: 513

    Google Scholar 

  38. Vogel M (1987) PhD thesis, Berlin

    Google Scholar 

  39. Jonker SA, Ariese F, Verhoeven JW (1989) Reel Trav Chim Pays-Bas 108: 109

    Article  CAS  Google Scholar 

  40. Jonker SA, Verhoeveji JW, Reiss CA, Goubitz K, Heijdenrijk D (1990) Reel Trav Chim Pays- Bas 109: 154

    Article  CAS  Google Scholar 

  41. Cowley DJ (1986) Nature 319: 14

    Article  Google Scholar 

  42. Kosower EM, Huppert D (1986) Ann Rev Phys Chem 37: 127

    Article  CAS  Google Scholar 

  43. Nowak W, Rettig W, J Mol Struct THEOCHEM, submitted

    Google Scholar 

  44. Kang TJ, Jarzeba W, Barbara PF, Fonseca T (1990) Chem Phys 149: 81

    Article  CAS  Google Scholar 

  45. Mataga N, Yao H, Okada T, Rettig W (1989) J Phys Chem 93: 3383

    Article  CAS  Google Scholar 

  46. Lueck H, Windsor IVfW, Rettig W (1990) J Phys Chem 94: 4550

    Article  CAS  Google Scholar 

  47. AI-Hassan KA, Rettig W (1986) Chem Phys Lett 126: 273

    Article  CAS  Google Scholar 

  48. Anwand D, Müller FW, Strehmel B, Schiller K (1991) Makromol Chem 192: 1981

    Article  CAS  Google Scholar 

  49. Tazuke S, Guo RK, Ikeda T, Ikeda T (1990) Macromolecules 23: 1208

    Article  CAS  Google Scholar 

  50. Rettig W, Baumann W (1992) In: Rabek JF (ed) Photochemistry and Photophysics, Vol. VI. CRC Press, in press

    Google Scholar 

  51. Levy A, Avnir D, Ottolenghi M (1985) Chem Phys Lett 121: 233

    Article  CAS  Google Scholar 

  52. Günther R, Oelkrug D, Rettig W (1991) to be published

    Google Scholar 

  53. Grabowska A, Bulska H, Rymarz G (1987) Polish Patent No 266 542

    Google Scholar 

  54. Sepiol J, Bulska H, Grabowska A (1987) Chem Phys Lett 140: 607

    Article  CAS  Google Scholar 

  55. Kasha M, Aartsma TJ, McMorrow D, Chou T (1984) J Phys Chem 88: 4596

    Article  Google Scholar 

  56. Vollmer F, Rettig W (1990) unpublished results

    Google Scholar 

  57. Ayuk AA, Rettig W, Lippert E (1981) Ber Bunsenges Phys Chem 85: 553

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rettig, W. (1993). Kinetic Studies on Fluorescence Probes Using Synchrotron Radiation. In: Wolfbeis, O.S. (eds) Fluorescence Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77372-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77372-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77374-7

  • Online ISBN: 978-3-642-77372-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics