The Specific Geometry of the CuO2-Plane and Electronic Properties of High-Temperature Superconductors

  • T. N. Antsygina
  • V. A. Slusarev
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


The effect of doping on both the Neel temperature and the temperature of superconducting transition is considered. The temperature dependences of the order parameter and the energy gap of high-T c superconductors are studied using the specific geometry of the CuO2-plane. It is shown that the effects of carrier scattering by the spin fluctuations of the copper subsystem lead to a sharp decrease of the energy gap in the excitation spectrum. The theoretical results are compared with experimental data.


Specific Geometry Spin Fluctuation Neel Temperature Molecular Orbital Method Cylindric Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antsygina T.N., Slusarev V.A., Fiz. Nizk. Temp. 15 (1989) 265ADSGoogle Scholar
  2. 2.
    Antsygina T.N., Slusarev V.A., Fiz. Nizk. Temp. 15 (1989) 506Google Scholar
  3. 3.
    Zaanen J., Oles A.M., Phys. Rev. B37 (1988) 9423ADSGoogle Scholar
  4. 4.
    Emery V.J., Reiter G., Phys. Rev. B38 (1988) 4547ADSGoogle Scholar
  5. 5.
    Sinha S.K. et al., Physica B156, 157 (1989) 854Google Scholar
  6. 6.
    Abrikosov A.A., Gorkov L.P., ZhETF 39 (1960) 1781Google Scholar
  7. 7.
    Yanson I.K. et al., Fiz. Nizk. Temp. 13 (1987) 557ADSGoogle Scholar
  8. 8.
    Yanson I.K. et al., Fiz. Nizk. Temp. 15 (1989) 803ADSGoogle Scholar
  9. 9.
    Lifshitz E.M., Pitaevskii. Statistical Physics, Vol. 2, (Pergamon, New York 1980)Google Scholar
  10. 10.
    Shafer M.W. et al., Phys. Rev. 39 (1989) 2914ADSCrossRefGoogle Scholar
  11. 11.
    Van Dover R.B. et al., Phys. Rev. 35 (1987) 5337CrossRefGoogle Scholar
  12. 12.
    Torrance J.B. et al., Phys. Rev. 40 (1989) 8872ADSCrossRefGoogle Scholar
  13. 13.
    Abrikosov A.A., Falkovsky L.A., Pisma v ZhETF 49 (1989) 463ADSGoogle Scholar
  14. 14.
    Carlson B.C., Keller J.M., Phys. Rev. 105 (1957) 102MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    Gombas P. Theorie und Lösungsmethoden des Mehrteichenproblems der Wellenmechanik, (Basel 1950)Google Scholar
  16. 16.
    Chen H., Callaway J., Misra P.K., Phys. Rev. B38 (1988) 195ADSGoogle Scholar
  17. 17.
    Mila F., Phys. Rev. B38 (1988) 1358Google Scholar
  18. 18.
    Antsygina T.N., Slusarev V.A., Superconductivity: Phys. Chem. Techn. 3 (1990) 2277Google Scholar
  19. 19.
    Drude W. et al., Phys. Rev. B39 (1989) 7328ADSGoogle Scholar
  20. 20.
    Kratzer A., Franz W., Transzendente Funktionen, (Leipzig 1960)MATHGoogle Scholar
  21. 21.
    Whittaker E.T., Watson G.N., A Course of Modern Analysis, (Cambrige University Press, Cambridge 1927)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • T. N. Antsygina
    • 1
  • V. A. Slusarev
    • 1
  1. 1.Institute for Low Temperature Physics and EngineeringKharkov-164USSR

Personalised recommendations