Fermion Clustering in an Exactly-Soluble N-Fermion Model for Hadronic, Nuclear and Superconductivity Physics

  • J. Dukelsky
  • C. Esebbag
  • M. de Llano
Conference paper


We highlight the dynamical similarities between quark interactions, effective nucleon-nucleon interactions and the 3D electron fluid “jellium” model, on the one hand, and the exactly-soluble 1D fermion fluid with attractive delta-fuction pairwise potentials, on the other. The latter model is characterized by clustering of particles at low density and strong coupling. This motivates solving the Cooper pair problem within the model for all couplings and/or densities, a task accomplished exactly in graphical form. For weak coupling the essential singularity characteristic of standard 3D low-temperature superconductivity emerges, while for strong coupling BCS theory reproduces that exact ground-state system energy. The transition from large-coherence-length (low-T c-like) Cooper pairs to small (“bipolaron”, high-T c-like) ones is smooth.


Nuclear Matter Essential Singularity Full Curf Delta Potential Fermion Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.A. Bethe, Z. Phys. 71, 205 (1931).CrossRefMATHADSGoogle Scholar
  2. [2]
    J.B. McGuire, J. Math. Phys. 5, 622 (1964)CrossRefMATHADSMathSciNetGoogle Scholar
  3. [2a]
    C.N. Yang, Phys. Rev. 168, 1920 (1968).CrossRefADSGoogle Scholar
  4. [3]
    F. Calogero, A. Degasperis, Phys. Rev. A 11, 265 (1975).ADSMathSciNetGoogle Scholar
  5. [4]
    V.C. Aguilera-Navarro, E. Ley-Koo, M. de Llano, S.M. Peltier, and A. Plastino, J. Math. Phys. 23, 2439 (1982).CrossRefADSMathSciNetGoogle Scholar
  6. [5]
    N.J. Zabusky and M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).CrossRefMATHADSGoogle Scholar
  7. [6]
    M. Casas, C. Esebbag, A. Extremera, J.M. Getino, M. de Llano, A. Plastino, and H. Rubio, Phys. Rev. A (in press).Google Scholar
  8. [7]
    M. Gaudin, Phys. Lett. A 24, 55 (1967).ADSGoogle Scholar
  9. [8]
    E.H. Lieb and M. de Llano, J. Math. Phys. 19, 860 (1978).CrossRefADSGoogle Scholar
  10. [9]
    D.S. Koltun, Phys. Rev. C 36, 2047 (1987)Google Scholar
  11. [9a]
    D.S. Koltun and S. Tosa, Phys. Lett. B 172, 267 (1986)ADSGoogle Scholar
  12. [9b]
    S. Tosa, Phys. Rev. C 34, 2302 (1986).ADSMathSciNetGoogle Scholar
  13. [10]
    T. Kebukawa, Phys. Rev. C 35, 794 (1986).ADSGoogle Scholar
  14. [11]
    M. de Llano, Nucl. Phys. A 317, 183 (1979).ADSGoogle Scholar
  15. [12]
    S. Pittel, J. Engel, and J. Dukelsky, Phys. Lett. B 247, 185 (1990).ADSGoogle Scholar
  16. [13]
    E.P. Wigner, Phys. Rev. 46, 1002 (1934).CrossRefMATHADSGoogle Scholar
  17. [14]New York
    A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, , 1971) p. 21Google Scholar
  18. [14a] New York
    A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, , 1971) p. 330 ffGoogle Scholar
  19. [15]
    A.J. Leggett, J. Phys. (Paris) 41, C7 (1980).CrossRefGoogle Scholar
  20. [16]
    N.F. Mott, Contemp. Phys. 31, 373 (1990)CrossRefADSGoogle Scholar
  21. [16a]
    R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 1 (1990)CrossRefGoogle Scholar
  22. [16b]
    R. Friedberg and T.D. Lee, Phys. Rev. B 40, 6745 (1989)ADSGoogle Scholar
  23. [16c]
    R. Friedberg and T.D. Lee, Phys. Lett. A 152, 417 (1991)ADSGoogle Scholar
  24. [16d]
    R. Friedberg, R.D. Lee, and U.C. Ren, Phys. Lett. 152, 423 (1991).CrossRefGoogle Scholar
  25. [17]
    M. Takahashi, Prog. Theor. Phys. 44, 348 (1970).Google Scholar
  26. [18]
    L.N. Cooper, Phys. Rev. 104, 1189 (1956).Google Scholar
  27. [19]
    C. Esebbag, J.M. Getino, M. de Llano, S.A. Moszkowski, U. Oseguera, A. Plastino, and H. Rubio, The essential singularity in Cooper pairing in one-, two-, and three-dimensions (to be published).Google Scholar
  28. [20]
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1977) p. 163.Google Scholar
  29. [21]
    N.M. Hugenholtz and L. van Hove, Physica 24, 363 (1958).CrossRefMATHADSMathSciNetGoogle Scholar
  30. [22]
    K. Miyake, Prog. Theor. Phys. 69, 1794 (1984)CrossRefADSGoogle Scholar
  31. [22a]
    M. Randeria, J.-M. Duan, and L.-Y. Shiek, Phys. Rev. Lett. 62, 981 (1989)CrossRefADSGoogle Scholar
  32. [22b]
    M. Randeria, J.-M. Duan, and L.-Y. Shiek, Phys. Rev. B. 41, 327 (1990).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. Dukelsky
  • C. Esebbag
    • 1
  • M. de Llano
    • 2
  1. 1.Universidad Autónoma de MadridSpain
  2. 2.North Dakota State UniversityFargoUSA

Personalised recommendations