Skip to main content

Canonical Transformations in Mechanics vis-à-vis Those in Optics

  • Conference paper
Book cover Symmetries in Physics
  • 161 Accesses

Abstract

The phase spaces of 2-dim Mechanics and of 3-dim Optics are locally the same, but globally different. While momentum is an unbounded variable in classical mechanics, in geometric optics it is constrained to a disk that is the projection of the ray direction sphere, whose radius is the local index of refraction. Canonical transformations in mechanics preserve the Heisenberg-Weyl algebra. In geometric optics, in addition, they must preserve the natural momentum range. We show that the physical phenomena of optics that produce canonical transformations are actually much richer than those in mechanics: they include refracting surfaces. In fact, through the opening coma map, the range limitation may be lifted. The quadratic Hamiltonians of mechanics provide the paraxial régime of optics. The optical aberrations of the metaxial régime are the higher-order approximations. Finally, we note that 2-dim mechanics is based on the Heisenberg-Weyl group W2 while 3-dim optics is based on the Euclidean group ISO(3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.Moshinsky and C. Quesne, Oscillator Systems. In Proceedings of the xv Solvay Conference in Physics (Brussels, 1970), edited by E. Prigogine (Gordon & Breach, New York, 1974).

    Google Scholar 

  2. C. Quesne and M. Moshinsky, Linear canonical transformations and their unitary representations, J. Math. Phys. 12, 1772–1780 (1971).

    Google Scholar 

  3. M. Moshinsky and C. Quesne, Canonical transformations and matrix elements, J. Math. Phys. 12, 1780–1783 (1971).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. M. Moshinsky, Canonical Transformations and Quantum Mechanics, Lectures of the 1971 Latin American School of Physics, Mexico DF.

    Google Scholar 

  5. M. Moshinsky, T.H. Seligman, and K.B. Wolf, Canonical transformations and the radial oscillator and Coulomb problems. J. Math. Phys. 13, 901–907 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  6. J.D. Louck, M. Moshinsky, and K.B. Wolf, Canonical transformations and accidental degeneracy. I. The anisotropic harmonic oscillator, J. Math. Phys. 14, 692–695 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  7. J.D. Louck, M. Moshinsky, and K.B. Wolf, Canonical transformations and accidental degeneracy. II. The isotropic oscillator in a sector, J. Math. Phys. 14, 696–700 (1973).

    Article  ADS  Google Scholar 

  8. P.A. Mello and M. Moshinsky, Nonlinear canonical transformations and their representation in quantum mechanics. J. Math. Phys. 16, 2017–2022 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Moshinsky and T.H. Seligman, Canonical transformations to action and angle variables and their representation in quantum mechanics, Ann. Phys. 114, 243–258 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. K.B. Wolf, Equally-spaced energy spectra: the harmonic oscillator with a centrifugal barrier or with a centripetal well. Kinam 3, 323–346 (1981).

    Google Scholar 

  11. K.B. Wolf, Canonical transformations to phase variables in quantum oscillator systems. A group theoretic solution. Kinam 4, 293–332 (1982).

    MATH  Google Scholar 

  12. J.M. Souriau, Structure des Systèmes Dynamiques (Dunod, Paris, 1970).

    MATH  Google Scholar 

  13. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge U. Press, Cambridge, 1984).

    MATH  Google Scholar 

  14. M. Nazarathy and J. Shamir, Fourier optics described by operator algebra, J. Opt. Soc. Am. 70, 150–158 (1980);

    Article  ADS  Google Scholar 

  15. ibid., First order optics —a canonical operator representation. I. Lossless systems. J. Opt. Soc. Am. 72, 356–364 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  16. A.J. Dragt, Lie algebraic theory of geometric optics and optical aberrations, J. Opt. Soc. Am. 72, 372–379 (1982); ibid., Lectures on Nonlinear Orbit Dynamics, AIP Conference Proceedings N° 87 (American

    Article  ADS  MathSciNet  Google Scholar 

  17. Institute of Physics, New York, 1982).

    Google Scholar 

  18. J.W.Goodman, Introduction to Fourier Optics, (Mc Graw-Hill, New York, 1968).

    Google Scholar 

  19. K.B. Wolf, The Heisenberg-Weyl ring in quantum mechanics. In: Group Theory and its Applications, Vol. 3, edited by E.M.Loebl (Academic Press, New York, 1975), pp. 189–247.

    Google Scholar 

  20. K.B. Wolf, Elements of Euclidean optics. In: Lie Methods in Optics, second workshop, Lecture Notes in Physics, Vol. 352 (Springer Verlag, Heidelberg, 1989), pp. 116–162.

    Chapter  Google Scholar 

  21. ibid., An Introduction to Hamiltonian Optics (Cambridge University Press, 1970).

    Google Scholar 

  22. A.J. Dragt, E. Forest, and K.B. Wolf, Foundations of a Lie algebraic theory of geometrical optics. In: Lie Methods in Optics, Springer Lecture Notes in Physics, Vol. 250, edited by J. Sánchez Mondragón and K.B. Wolf (Springer Verlag, Heidelberg, 1986);

    Google Scholar 

  23. K.B. Wolf, Symmetry-adapted classification of aberrations, J. Opt. Soc. Am. A 5, 1226–1232 (1988).

    Article  ADS  Google Scholar 

  24. E. Forest and M. Berz, Canonical integration and analysis of periodic maps using non-standard analysis and Lie methods; L.M.Healy and A.J.Dragt, Concatenation of Lie algebraic maps. In: Lie Methods in Optics, second workshop, op.cit.

    Google Scholar 

  25. V.I. Man’ko and K.B. Wolf, The map between Heisenberg-Weyl and Euclidean optics is comatic. In: Lie Methods in Optics, second workshop, op.cit.

    Google Scholar 

  26. K.B. Wolf, The Fourier transform in metaxial geometric optics. J. Opt. Soc. Am. 8, 1399–1405 (1991).

    Article  ADS  Google Scholar 

  27. C.P. Boyer and K.B. Wolf, Deformations of inhomogeneous classical Lie algebras to the algebras of the linear groups, J. Math. Phys.

    Google Scholar 

  28. 14, 1853–1859 (1973);

    Google Scholar 

  29. ibid. The algebra and group deformations I m[SO(n) ⊗ SO(m)] ⇒ SO(n,m), I m[U(n) ⊗ U(m)] ⇒ U(n,m), and I m[Sp(n) ⊗ Sp(m)] ⇒ Sp(n, m), for 1 ≤ m ≤ n. J. Math. Phys.

    Google Scholar 

  30. 15, 2096–2100 (1974).

    Google Scholar 

  31. N.M. Atakishiyev, W. Lassner, and K.B. Wolf, The relativistic coma aberration. I. Geometrical optics, J. Math. Phys. 30, 2457–2462 (1989);

    Article  ADS  MathSciNet  Google Scholar 

  32. ibid., The relativistic coma aberration. II. Helmholtz wave optics J. Math. Phys. 30, 2463–2468 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Navarro-Saad and K.B. Wolf, Factorization of the phase-space transforamtion produced by an arbitrary refracting surface, J. Opt. Soc. Am. A 3, 340–346 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  34. K.B. Wolf, Symmetry in Lie optics, Ann. Phys. 172, 1–25 (1986).

    Article  MATH  ADS  Google Scholar 

  35. H. Goldstein, Classical Mechanics, 2nd edition (Addison Wesley, Reading, Mass., 1980).

    MATH  Google Scholar 

  36. H. Bacry and M. Cadilhac, Metaplectic group and Fourier optics, Phys. Rev. A 23, 2533–2536 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  37. Lie Methods in Optics, op. cit.

    Google Scholar 

  38. T. Sekiguchi and K.B. Wolf, The Hamiltonian formulation of optics, Am. J. Phys. 55, 830–835 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  39. Lie Methods in Optics, op.cit., pp. 45–103.

    Google Scholar 

  40. K.B. Wolf, Point transformation in quantum mechanics. Rev. Mex. Fís. 22, 45–74 (1973).

    Google Scholar 

  41. M. Navarro-Saad and K.B. Wolf, The group-theoretical treatment of aberrating systems. I. Aligned lens systems in third aberration order J. Math. Phys. 27, 1449–1457 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  42. K.B. Wolf, The group-theoretical treatment of aberrating systems. III. The classification of asymmetric aberrations. J. Math. Phys. 28, 2498–2507 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  43. K.B. Wolf, Nonlinearity in aberration optics. In: Symmetries and Nonlinear Phenomena, Proceedings of the International School in Applied Mathematics (Centro Internacional de Física, Paipa, Colombia). Edited by D.Levi and P.Winternitz (World Scientific, Singapur, 1988), pp. 376–429.

    Google Scholar 

  44. A.J. Dragt and J. Finn, Lie series and invariant functions for analytic symplectic maps. J. Math. Phys. 17, 2215–2227 (1976).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. L. Seidel, Zur Dioptrik. Astronomische Nachrichten N° 871, 105–120 (1853).

    Google Scholar 

  46. K.B. Wolf and G. Krötzsch, Group-classified polynomials of phase space in higher-order aberration expansions, Comunicaciones Técnicas IIMAS preprint, Serie Investigación # 563. Journal of Symbolic Computation, in press (1991).

    Google Scholar 

  47. V.I. Man’ko and K.B. Wolf, The map between Heisenberg-Weyl and Euclidean optics is comatic. In: Lie Methods in Optics, second workshop, Lecture Notes in Physics, Vol. 352 (Springer Verlag, Heidelberg, 1989), pp. 163–197.

    Chapter  Google Scholar 

  48. Lie Methods in Optics, op.cit., pp. 29–44.;

    Google Scholar 

  49. H. Raszillier and W. Schempp, ibid. Holographic image processing, coherent optical computing, and neural computer architecture for pattern recognition. In: Lie Methods in Optics, second workshop, Lecture Notes in Physics, Vol. 352 (Springer Verlag, Heidelberg, 1989), pp. 19–46.

    Google Scholar 

  50. R. Lenz, Group Theoretical Methods in Image Processing, Lecture Notes in Computer Science, Vol. 413 (Springer Verlag, Heidelberg, 1987).

    Google Scholar 

  51. G. Krötzsch and K.B. Wolf, La transformación raíz de superficies refractantes y espejos, Rev. Mex. Fís. 37, 540–554 (1991).

    Google Scholar 

  52. M. Navarro-Saad and K.B. Wolf, Applications of a factorization theorem for ninth-order aberration optics, Journal of Symbolic Computa Hon 1, 235–239 (1985).

    Article  MathSciNet  Google Scholar 

  53. H.M.S. Nussenzweig, Complex angular momentum theory of the rainbow and the glory. J. Opt. Soc. Am. 69, 1069–1098 (1979).

    ADS  Google Scholar 

  54. K.B. Wolf, The Euclidean root of Snell’s law. I. Geometric polarization optics. Reportes de Investigación IIMAS preprint 1, N° 1 (May 1991), to appear in J. Math. Phys. (1992).

    Google Scholar 

  55. S. Steinberg and K.B. Wolf, Invariant inner products on spaces of solutions of the Klein-Gordon and Helmholtz equations, J. Math. Phys. 22, 1660–1663 (1981).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. K.B. Wolf, Estudios Teóricos sobre ia Estructura Nuclear del Flúor 19, Thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México (1965). Directed by Marcos Moshinsky.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolf, K.B. (1992). Canonical Transformations in Mechanics vis-à-vis Those in Optics. In: Frank, A., Wolf, K.B. (eds) Symmetries in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77284-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77284-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77286-3

  • Online ISBN: 978-3-642-77284-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics