Semiconductor-Coupled Superconducting Junctions — SNS in the Mesoscopic Regime

  • D. R. Heslinga
  • W. M. van Huffelen
  • T. M. Klapwijk
Conference paper
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 31)

Abstract

A review is given of recent experiments with an emphasis on the development of a conceptual framework for superconductor-semiconductor- superconductor (SSmS) junctions. It is shown that these structures are best described as SNS (N=normal metal) with a potential barrier of variable strength at the interfaces, even in the absence of a Schottky barrier. When the barrier is highly transmissive Andreev reflection becomes important. Because the junction length is typically much shorter than the inelastic scattering length this leads to observable effects on the carrier statistics in Sm, viz. nonthermal electron energy distribution and subharmonic gap structure.

Keywords

Coherence Ruby Harman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Seto and T. van Duzer, in Low Temperature Physics LT13, edited by K.D. Timmerhaus, W.J. O’Sullivan, and E.F. Hammel ( Plenum, New York, 1974 ) Vol. 3, pp. 328–333.Google Scholar
  2. [2]
    P.G. DeGennes, Rev. Mod. Phys. 36, 225 (1964).CrossRefADSGoogle Scholar
  3. [3]
    C.L. Huang and T. van Duzer, Appl. Phys. Lett. 25, 753 (1974).CrossRefADSGoogle Scholar
  4. [4]
    R.C. Ruby and T. van Duzer, IEEE Trans. Elee. Dev. ED-28, 1394 (1981).Google Scholar
  5. [5]
    A. Serfaty, J. Aponte, and M. Octavio, J. Low Temp. Phys. 63, 23 (1986); 67,CrossRefADSGoogle Scholar
  6. 319(.
    E) (1987).Google Scholar
  7. [6]
    T. Nishino, E. Yamada, and U. Kawabe, Phys. Rev. B33, 2042 (1986).ADSGoogle Scholar
  8. [7]
    A.W. Kleinsasser, Phys. Rev. B46, 8753 (1987).Google Scholar
  9. [8]
    T. Kawakami and H. Takayanagi, Appl. Phys. Lett. 46, 92 (1985).CrossRefADSGoogle Scholar
  10. [9]
    H. Takayanagi and T. Kawakami, Phys. Rev. Lett. 54, 2449 (1985).CrossRefADSGoogle Scholar
  11. [10]
    A.W. Kleinsasser, T.N. Jackson, G.D. Pettit, H. Schmid, J.M. Woodall, and D.P. Kern, Appl. Phys. Lett. 49, 1741 (1986).CrossRefADSGoogle Scholar
  12. [11]
    T. Akazaki, T. Kawakami, and J. Nitta, J. Appi. Phys. 66, 6121 (1989).CrossRefADSGoogle Scholar
  13. [12]
    A.W. Kleinsasser, J. Appl. Phys. 69, 4146 (1991).CrossRefADSGoogle Scholar
  14. [13]
    A.W. Kleinsasser, T.N. Jackson, D. Mclnturff, F. Rammo, G.D. Pettit, and J.M. Woodall, Appi. Phys. Lett. 55, 1909 (1989).CrossRefADSGoogle Scholar
  15. [14]
    L.G. Aslamazov and M.V. Fistul’, JETP Lett. 30, 213 (1979);ADSGoogle Scholar
  16. L.G. Aslamazov and M.V. Fistul’,Sov. Phys. JETP 54, 206 (1981);Google Scholar
  17. L.G. Aslamazov and M.V. Fistul’,Sov. Phys. JETP 56, 666 ( 1982Google Scholar
  18. [15]
    V.Z. Kresin, Phys. Rev. B 34, 7587 (1986).CrossRefADSGoogle Scholar
  19. [16]
    Y. Tanaka and M. Tsukada, Phys. Rev. B 37, 5087 (1988);CrossRefADSGoogle Scholar
  20. Y. Tanaka and M. Tsukada, Phys. Rev. B 37, 5095 (1988).CrossRefADSGoogle Scholar
  21. [17]
    C. Nguyen, J. Werking, H. Kroemer, and E.L. Hu, Appl. Phys. Lett. 57, 87 (1990).CrossRefADSGoogle Scholar
  22. [18]
    C.W.J. Beenakker and H.van Houten, preprint.Google Scholar
  23. [19]
    H. van Houten, Appi. Phys. Lett. 58, 1326 (1991).CrossRefADSGoogle Scholar
  24. [20]
    B.J. van Wees, K.-M.H. Lenssen, and C.J.P. Harmans, preprint.Google Scholar
  25. [21]
    F. A. Padovani, in Semiconductors and Semimetals, edited by R.K. Willardson and A.C. Beer (Academic, New York, 1971), Vol. 7, Chap. 2, pp. 75 - 147.Google Scholar
  26. [22]
    M. McColl, M.F. Millea, and A.H. Silver, Appi. Phys. Lett. 23, 263 (1973).CrossRefADSGoogle Scholar
  27. [23]
    D.R. Heslinga, W.M. van Huffelen, T.M. Klapwijk, S.J.M. Bakker, and E.W.J.M. van der Drift, Cryogenics 30, 1009 (1990).CrossRefGoogle Scholar
  28. [24]
    W.J. Boudville and T.C. McGill, Appl. Phys. Lett. 48, 791 (1986).CrossRefADSGoogle Scholar
  29. [25]
    P.C. van Son, D.R. Heslinga, W.M. van Huffelen, and T.M. Klapwijk, in preparation.Google Scholar
  30. [26]
    K.K. Likharev, Rev. Mod. Phys. 51, 101 (1979).CrossRefADSGoogle Scholar
  31. [27]
    B.Z. Spivak and D.E. Khmel’nitskii, JETP Lett. 35, 412 (1982);ADSGoogle Scholar
  32. B.L. Altshuler, D.E. Khme–nitskii, and B.Z. Spivak, Solid State Comm. 48, 8 (1983).CrossRefGoogle Scholar
  33. [28]
    A. Furusaki and M. Tsukada, Solid state Comm. 78, 299 (1991).CrossRefADSGoogle Scholar
  34. [29]
    D.R. Heslinga, W.M. van Huffelen, and T.M. Klapwijk, IEEE Trans. Magn. MAG-27, 3264 (1991).Google Scholar
  35. [30]
    A.F. Andreev, Sov. Phys. JETP 19, 1128 (1964).Google Scholar
  36. [31]
    G.E. Blonder, M. Tinkham, and T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982).CrossRefADSGoogle Scholar
  37. [32]
    T.M. Klapwijk, G.E. Blonder, and M. Tinkham, Physica B 109/110, 1657 (1982).Google Scholar
  38. [33]
    M. Octavio, M. Tinkham, G.E. Blonder, and T.M. Klapwijk, Phys. Rev. B 27, 6739 (1983).CrossRefADSGoogle Scholar
  39. [34]
    K. Flensberg, J. Bindslev Hansen, and M. Octavio, Phys. Rev. B 38, 8707 (1988).CrossRefADSGoogle Scholar
  40. [35]
    T.M. Klapwijk, in Superconducting Quantum Interference Devices and their Applications SQUID’85, edited by H. Hahlbohm and H. Lubbig ( Walter de Gruyter amp; Co., Berlin, 1985 ).Google Scholar
  41. [36]
    A.W. Kleinsasser, T.N. Jackson, D. Melnturff, F. Rammo, G.D. Pettit, and J.M. Woodall, Appi. Phys. Lett. 57, 1811 (1990).CrossRefADSGoogle Scholar
  42. [37]
    W.M. van Huffelen, T.M. Klapwijk, and L. de Lange, this volume and submitted to Phys. Rev. Lett.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. R. Heslinga
    • 1
  • W. M. van Huffelen
    • 1
  • T. M. Klapwijk
    • 1
  1. 1.Department of Applied Physics and Materials Science CentreUniversity of GroningenAG GroningenThe Netherlands

Personalised recommendations