Skip to main content

Pathogenesis of Herpes Simplex Virus Infection and Animal Models for Its Study

  • Chapter
Book cover Herpes Simplex Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 179))

Abstract

Overcoming infection with herpes simplex virus (HSV) depends upon a complex interaction between virus and host. This interaction most commonly produces asymptomatic infection, as illustrated by the high prevalence of HSV antibodies in individuals with no history of clinically recognized illness (Gibson et al. 1990; Johnson et al. 1989). These findings suggest that host responses are generally effective in limiting viral disease. Clearly this is not always the case since millions of individuals experience symptomatic HSV infections with disease ranging from trivial to life threatening (Whitley 1990). From epidemiological studies and clinical observations we have learned that both viral and host factors may influence whether an individual experiences an asymptomatic infection or is afflicted with severe herpetic disease. Clinical studies, however, are inherently limited and do not permit detailed exploration of the host and viral determinants of disease expression. The use of well-characterized experimental animal models has proven invaluable in further defining the natural history of HSV infection. With the recent advances in molecular biology and immunology, animal models are being increasingly used to investigate the role of selected viral genes and specific immune responses in the pathogenesis and immunobiology of HSV infection. This chapter will review the experimental animal models used to study HSV and summarize our current understanding of the pathogenesis of infection, with a primary focus on genital herpes. The immunobiology of HSV, as it pertains to viral pathogenesis and animal model research, will receive minimal attention in this chapter but will be presented in greater detail in other chapters in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson CA, August MJ, Hsiung GD (1980) Pathogenecity of wild-type and temperature sensitive mutants of herpes simplex virus type 2 in guinea pigs. Infect Immun 30:159–169

    PubMed  CAS  Google Scholar 

  • Baron S, Worthington MG, Williams J, Gaines JW (1976) Postexposure serum prophylaxis of neonatal herpes simplex virus infection of mice. Nature 261: 505–506

    Article  PubMed  CAS  Google Scholar 

  • Bernstein Dl, Stanberry LR (1986) Zosteriform spread of herpes simplex virus type 2 genital infection in the guinea-pig. J Gen Virol 67:1851–1857

    Article  PubMed  Google Scholar 

  • Bernstein Dl, Stanberry LR, Harrison CJ, Kappes J, Myers MG (1986) Effects of oral acyclovir treatment of initial genital HSV-2 infection upon antibody response, recurrence patterns and subsequent HSV-2 reinfection in guinea pigs. J Gen Virol 67:1601–12

    Article  PubMed  CAS  Google Scholar 

  • Bernstein Dl, Harrison CJ, Jenski LJ, Myers MG, Stanberry LR (1991) Cell mediated immunological responses and recurrent genital herpes in the guinea pig: effects of glycoprotein therapy. J Immunol 146:3571–3577

    PubMed  CAS  Google Scholar 

  • Black WC (1942) The etiology of acute infectious gingivostomatitis. J Pedriatr 20:145–160

    Article  Google Scholar 

  • Blondeau JM, Aoki FY, Glavin GB, Nagy Jl (1991) Characterization of acute and latent herpes simplex virus infection of the dorsal root ganglia in rats. Lab Anim 25: 97–105

    Article  PubMed  CAS  Google Scholar 

  • Blyth SNA, Hill TJ, Field HJ, Harbour DA (1976) Reactivation of herpes simplex virus infection by ultraviolet light and possible involvement of prostglandins. J Gen Virol 33: 547–550

    Article  PubMed  CAS  Google Scholar 

  • Blyth WA, Harbour DA, Hill TJ (1984) Pathogenesis of zosteriform spread of herpes simplex virus in the mouse. J Gen Virol 65:1477–1486

    Article  PubMed  Google Scholar 

  • Bravo FJ, Myers MG, Bernstein Dl, Connelly BL, Harrison CJ, Kier AB, Stanberry LR (1990) Neonatal HSV infection in guinea pigs: a model to test antivirals. Abstracts of the 30th Intersci Conf Antimicrob Agents Chemother, Atlanta, abstract no 1104

    Google Scholar 

  • Brown ZA, Kern ER, Spruance SL, Overall JC Jr (1979) Clinical and virological course of herpes simplex genitalis. West J Med 130: 414–421

    PubMed  CAS  Google Scholar 

  • Cai WH, Gu B, Person S (1988) Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol 62: 2596–2604

    PubMed  CAS  Google Scholar 

  • Chou J, Kern ER, Whitley RJ, Roizman B (1990) Mapping of herpes simplex virus-1 neurovirulence to gamma 34.5, a gene nonessential for growth in culture. Science 250:1262–1266

    Article  PubMed  CAS  Google Scholar 

  • Clements GB, Subak-Sharpe (1988) Herpes simplex virus type 2 establishes latency in the mouse footpad. J Gen Virol 69: 375–383

    Article  PubMed  Google Scholar 

  • Cook ML, Stevens JG (1973) Pathogenesis of herpetic neuritis and ganglionitis in mice: evidence for intra-axonal transport of infection. Infect Immun 7: 272–288

    PubMed  CAS  Google Scholar 

  • Corey L, Spear PG (1986) Infections with herpes simplex viruses. N Engl J Med 314: 749–757

    Article  PubMed  CAS  Google Scholar 

  • Corey L, Adams HG, Brown ZA, Holmes KK (1983) Genital herpes simplex virus infection: clinical manifestations, course and complications. Ann Intern Med 98: 958–972

    PubMed  CAS  Google Scholar 

  • Croen KD, Ostrove JM, Dragovic L, Straus SE (1991) Characterization of herpes simlex virus type 2 latency associated transcription in human sacral ganglia and in cell culture. J Infect Dis 163: 23–28

    Article  PubMed  CAS  Google Scholar 

  • Darai G, Schwaier A, Komitowski D, Munk K (1978) Experimental infection of Tupaia belanger (tree shrews) with herpes simplex virus types 1 and 2. J Infect Dis 137: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Desai PJ, Schaffer PA, Minson AC (1988) Excretion of non-infectious virus particles lacking glycoprotein H by a temperature sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. J Gen Virol 69:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Dix RD, McKendall RR, Baringer JR (1983) Comparative neurovirulence of herpes simplex virus type 1 strains after peripheral or intracerebral inoculation of BALB/c mice. Infect infect 40: 103–112

    CAS  Google Scholar 

  • Donnenberg AD, Chaikof E, Aurelian L (1980) Immunity of herpes simplex virus type 2: cell-mediated immunity in latently infected guinea pigs. Infect Immun 30: 99–109

    PubMed  CAS  Google Scholar 

  • Field HJ (1988) Animal models in the evaluation of antiviral chemotherapy. In: Field HJ (ed) Antiviral agents: the development and assessment of antiviral chemotherapy, vol I. CRC Press, Boca Raton, pp 67–84

    Google Scholar 

  • Fraser-Smith EB, Smee DF, Matthews TR (1983) Efficacy of the acyclic nucleoside 9-(1,3-dihydoxy-2-propoxymethyl) guanine against primary and recrudescent genital herpes simplex virus type 2 infections in guinea pigs. Antimicrob Agents Chemother 24: 883–887

    PubMed  CAS  Google Scholar 

  • Fuller AO, Spear PG (1987) Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus type 1 prevent virion-cell fusion at the cell surface. Proc. Natl Acad Sci USA 84: 5454–5458

    Article  PubMed  CAS  Google Scholar 

  • Geller P, Coleman VR, Jawetz E (1953) Studies on herpes simplex virus: V. The fate of viable herpes simplex virus administered intravenously to man. J Immunol 71: 410–418

    PubMed  CAS  Google Scholar 

  • Gibson JJ, Hornung CA, Alexander GR, Lee FK, Potts WA, Nahmias AJ (1990) A cross-sectional study of herpes simplex virus types 1 and 2 in college students: occurrence and determinants of infection. J Infect Dis 162: 306–312

    Article  PubMed  CAS  Google Scholar 

  • Goodpasture EW, Teague O (1923) Transmission of the virus of herpes febrilis along nerves in experimentally infected rabbits. J Med Res 44:139–184

    PubMed  CAS  Google Scholar 

  • Green MT, Rosborough JP, Dunkle EC (1981) In vivo reactivation of herpes simplex virus in rabbit trigeminal ganglia: electrode model. Infect Immun 34: 69–76

    PubMed  CAS  Google Scholar 

  • Harrison CJ, Myers MG (1990) Relation of maternal CMV viremia and antibody response to the rate of congenital infection and intrauterine growth retardation. J Med Virol 31: 222–228

    Article  PubMed  CAS  Google Scholar 

  • Harrison CJ, Jenski L, Voychehovski T, Bernstein Dl (1988) Modification of immunological responses and clinical disease during topical R-837 treatment of genital HSV-2 infection. Antiviral Res 10: 209–224

    Article  PubMed  CAS  Google Scholar 

  • Hill TJ, Field HJ, Blyth WA (1975) Acute and recurrent infection with herpes simplex virus in the mouse-a model for studying latency and recurrent disease. J Gen Virol 28: 341–353

    Article  PubMed  CAS  Google Scholar 

  • Ho RJY, Burke RL, Merigan TC (1989) Antigen-presenting liposomes are effective in treatment of recurrent herpes simplex virus genitalis in guinea pigs. J Virol 63: 2951–2958

    PubMed  CAS  Google Scholar 

  • Hsiung GD, Chan VF (1989) Evaluation of new antiviral agents: II. The use of animal models. Antiviral Res 12: 239–258

    Article  PubMed  CAS  Google Scholar 

  • Hsiung GD, Mayo DR, Lucia HL, Landry ML (1984) Genital herpes: pathogenesis and chemotherapy in the guinea pig model. Rev Infect Dis 6: 33–50

    Article  PubMed  CAS  Google Scholar 

  • Javier RT, Sedafati F, Stevens JG (1986) Two avirulent herpes viruses interact in the animal to generate a virulent recombinant and a lethal infection. Science 234: 746–748

    Article  PubMed  CAS  Google Scholar 

  • Javier RT, Izumi KM, Stevens JG (1988) Location of herpes simplex virus neurovirulence gene dissociated from high-titer virus replication in the brain. J Virol 62:1381–1387

    PubMed  CAS  Google Scholar 

  • Johnson DC, Spear PG (1982) Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J Virol 43: 1102–1112

    PubMed  CAS  Google Scholar 

  • Johnson RE, Nahmias AJ, Magder LS, Lee FK, Brooks CA, Snowden CB (1989) A seroepidemiological survey of the prevalence of herpes simplex virus type 2 infection in the United States. N Engl J Med 321:7–12

    Article  PubMed  CAS  Google Scholar 

  • Kaner RJ, Baird A, Mansukhani A, Basilico C, Summers BD, Florkiewciz RZ, Hajjar DP (1990) Fibroblast growth factor receptor is the portal of cellular entry for herpes simplex virus type 1. Science 248:1410–1413

    Article  PubMed  CAS  Google Scholar 

  • Katzin DS, Connor JD, Wilson LA, Sexton RS (1967) Experimental herpes simplex infection in the owl monkey. Proc Soc Exp Biol Med 125: 391–398

    PubMed  CAS  Google Scholar 

  • Kern ER, Richards JT, Overall JC Jr, Glasgow LA (1978) Alteration of mortality and pathogenesis of three experimental herpesvirus hominis infections of mice with adenine arabinoside 5’-monophosphate, adenine arabinoside, and phosphonoacetic acid. Antimicrob Agents Chemother 13: 53–60

    PubMed  CAS  Google Scholar 

  • Kern ER, Richards JT, Overall JC Jr (1986) Acyclovir treatment of disseminated herpes simplex virus type 2 infection of weanling mice: alteration of mortality and pathogenesis. Antiviral Res 6: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Klastersky J, Cappel R, Snocck JM, Flament J, Thiry L (1972) Ascending myelitis in association with herpes-simplex virus. N Engl J Med 287: 182–184

    Article  PubMed  CAS  Google Scholar 

  • Klein J, DeStefano E (1983) Dissemination of herpes simplex virus in ganglia after footpad inoculation in neurectomized and non-neurectomized mice. Acta Virol 77: 231–238

    Article  CAS  Google Scholar 

  • Kristensson K, Lycke E, Sjostrand J (1971) Spread of herpes simplex in peripheral nerves. Acta Neuropathol (Berl) 17:44–53

    Article  CAS  Google Scholar 

  • Lopez C (1975) Genetics of natural resistance to herpesvirus infections in mice. Nature 258:152–153

    Article  PubMed  CAS  Google Scholar 

  • Lycke E, Kristensson K, Svennerholm B, Vahine A, Ziegler R (1984) Uptake and transport of herpes simplex virus in neurites of rat dorsal root ganglia cells in culture. J Gen Virol 65: 55–64

    Article  PubMed  Google Scholar 

  • Mani C, Stanberry LR, Bravo FJ, Bernstein Dl, Myers MG (1991) Neonatal herpes simplex virus infection in guinea pigs: effect of age on clinical disease and outcome (abstract) Pediatr Res 29:255A

    Google Scholar 

  • Meignier B, Longnecker R, Roizman B (1988) In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis 158: 602–614

    Article  PubMed  CAS  Google Scholar 

  • Meignier B, Martin B, Whitley J, Roizman B (1990) In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus). J Infect Dis 162: 313–321

    Article  PubMed  CAS  Google Scholar 

  • Muller SA, Hermann FC, Winkelman RK (1972) Herpes simplex infections in hematological malignancies. Am J Med 52:102–114

    Article  PubMed  CAS  Google Scholar 

  • Myers MG, Oxman MN, Clark JE, Arndt KA (1975) Failure of neutral-red photodynamic inactivation in recurrent herpes simplex infections. N Engl J Med 293: 945–949

    Article  PubMed  CAS  Google Scholar 

  • Nahmias AJ, London WT, Catalona LW, Fuccillo DA, Sever JL, Graham C (1971) Genital herpesvirus hominis type 2 infection: an experimental model in Cebus monkeys. Science 171: 297–298

    Article  PubMed  CAS  Google Scholar 

  • Nahmias AJ, Whitley RJ, Vistine AN, Takei Y, Alford CA Jr, the NIAID Collaborative Antiviral Study Group (1982) Herpes simplex encephalitis: laboratory evaluations and their diagnostic significance. J Infect Dis 145: 829–836

    Article  PubMed  CAS  Google Scholar 

  • Nesburn AB, Cook ML, Stevens JG (1972) Latent herpes simplex virus: isolation from rabbit tri-gemmalganglia between episodes of recurrent ocular infection. Arch Ophthalmol 88: 412–417

    PubMed  CAS  Google Scholar 

  • Overall JC Jr, Kern ER, Schlitzer RL, Friedman SB, Glasgow LA (1975) Genital herpesvirus hominis infection in mice. I. Development of an experimental model. Infect Immun 11: 476–480

    PubMed  Google Scholar 

  • Perna JJ, Mannix ML, Rooney JF, Notkins AL, Straus SE (1987) Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model. J Am Acad Dermatol 17: 473–478

    Article  PubMed  CAS  Google Scholar 

  • Polvino-Bodnar M, Orberg PK, Schaffer PA (1987) Herpes simplex virus type 1 oriL is not required for virus replication or for the establishment and reactivation of latent infection in mice. J Virol 61:3528–3535

    PubMed  CAS  Google Scholar 

  • Rector JT, Lausch RN, Oakes JE (1982) Use of monoclonal antibodies for analysis of antibody-dependent immunity to ocular herpes simplex virus type 1 infection. Infect Immun 38: 168–174

    PubMed  CAS  Google Scholar 

  • Reeves WC, DiGiacomo RF, Alexander ER, Lee CK (1976) Latent herpesvirus hominis from the trigeminal and sacral dorsal root ganglia of Cebus monkeys. Proc Soc Exp Biol Med 153: 258–261

    PubMed  CAS  Google Scholar 

  • Reeves WC, Corey L, Adams HG, Vontver LA, Holmes KK (1981) Risk of recurrence after episodes of genital herpes: relation of HSV type and antibody response. N Engl J Med 305: 315–319

    Article  PubMed  CAS  Google Scholar 

  • Renis HE (1975) Genital infection of female hamsters with herpesvirus hominis type 2 (HVH-2). Proc Soc Exp Biol Med 150: 723–727

    PubMed  CAS  Google Scholar 

  • Roizman B, Sears AE (1990) Herpes simplex viruses and their replication. In: Field BN, Knipe DM (eds) Virology. Raven, New York, pp 1795–1841

    Google Scholar 

  • Rosenthal KS, Roess D, Barisas BG (1988) Herpes simplex virus type 1 initiates mobilization of cell surface proteins. Biochim Biophys Acta 942: 38–44

    Article  PubMed  CAS  Google Scholar 

  • Rosen-Wolff A, Scholz J, Darai G (1989) Organotropism of latent herpes simplex virus type 1 is correlated to the presence of a 1.5 kb RNA transcript mapped within the BamHI DNA fragment B (0.738 to 0.809 map units). Virus Res 12: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Rouse BT, Norley S, Martin S (1988) Antiviral cytotoxic T lymphocyte induction and vaccination. Rev Infect Dis 10:16–33

    Article  PubMed  CAS  Google Scholar 

  • Schwartz J, Roizman B (1969) Similarities and differences in the development of laboratory strains of herpes simplex virus in HEp-2 cells: electron microscopy. J Virol 4: 879–889

    PubMed  CAS  Google Scholar 

  • Scriba M, Tatzber F (1981) Pathogenesis of herpes simplex virus infections in guinea pigs. Infect Immun 34: 655–661

    PubMed  CAS  Google Scholar 

  • Sedarti F, Izumi KM, Wagner EK, Stevens JG (1989) Herpes simplex virus type 1 latency-associated transcription plays no role in the establishment or maintenance of a latent infection in murine sensory neurons. J Virol 63: 4455–4458

    Google Scholar 

  • Simmons A, Nash AA (1987) Effect of B cell suppression on primary infection and reinfection of mice with herpes simplex virus. J Infect Dis 155: 469–475

    Article  Google Scholar 

  • Smolin G, Okumoto MA, Ohno S (1976) Experimental herpetic keratitis in the guinea pig. Surv Ophthalmol 21:205–208

    Article  PubMed  CAS  Google Scholar 

  • Spivack JG, Fräser NW (1987) Detection of herpes simplex virus type 1 transcripts during latent infection in mice. J Virol 61: 3841–3847

    PubMed  CAS  Google Scholar 

  • Spruance SL, McKeough MB (1988) Evaluation of antiviral treatments for recurrent herpes simplex labialis in the dorsal cutaneous guinea pig model. Antiviral Res 9: 295–313

    Article  PubMed  CAS  Google Scholar 

  • Stanberry LR (1986) Herpesvirus latency and recurrence. Prog Med Virol 33: 61–77

    PubMed  CAS  Google Scholar 

  • Stanberry LR (1989) Animal model of ultraviolet-radiation-induced recurrent herpes simplex virus infection. J Med Virol 28:125–128

    Article  PubMed  CAS  Google Scholar 

  • Stanberry LR (1990a) Capsaicin interfers with the centrifugal spread of virus in primary and recurrent genital herpes simplex virus infection. J Infect Dis 162: 29–34

    Article  PubMed  CAS  Google Scholar 

  • Stanberry LR (1990b) Subunit viral vaccines: therapeutic and prophylactic uses. In: Aurelian L (ed) Herpesviruses, the immune systems and aids. Kluwer, Boston, pp 309–341

    Chapter  Google Scholar 

  • Stanberry LR (1991) Herpes simplex virus vaccines. Semin Pediatr Infect Dis 2(3): 178–185

    Google Scholar 

  • Stanberry LR, Kern ER, Richards JT, Abbott TM, Overall JC Jr (1982) Genital herpes in guinea pigs: pathogenesis of the primary infection and description of recurrent disease. J Infect Dis 146: 397–404

    Article  PubMed  CAS  Google Scholar 

  • Stanberry LR, Kit S, Myers MG (1985a) Thymidine kinase-deficient herpes simplex virus type 2 genital infection in guinea pigs. J Virol 55: 322–328

    PubMed  CAS  Google Scholar 

  • Stanberry LR, Kern ER, Richards JT, Overall JC Jr (1985b) Recurrent genital herpes simplex virus infection in the guinea pig. Intervirology 24: 226–231

    Article  PubMed  CAS  Google Scholar 

  • Stanberry LR, Bernstein Dl, Burke RL, Pachl C, Myers MG (1987) Recombinant herpes simplex virus glycoproteins: protection against initial and recurrent genital herpes. J Infect Dis 155: 914–920

    Article  PubMed  CAS  Google Scholar 

  • Stanberry LR, Burke RL, Myers MG (1988) Herpes simplex virus glycoprotein treatment of recurrent genital herpes. J Infect Dis 157:156–163

    Article  PubMed  CAS  Google Scholar 

  • Stanberry LR, Harrison CJ, Bernstein Dl, Burke RL, Shukla R, Ott G, Myers MG (1989) Herpes simplex virus glycoprotein immunotherapy of recurrent genital herpes: factors influencing efficacy. Antiviral Res 11: 203–214

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos DE, Myers MG, Bernstein Dl (1989) Genital infections due to herpes simplex virus type 2 in male guinea pigs. J Infect Dis 159: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Stroop WG, Schaefer DC (1986) Severity of experimentally reactivated herpetic eye disease is related to the neurovirulence of the latent virus. Invest Opthalmol Vis Sci 28: 229–237

    Google Scholar 

  • Stulting RD, Kindle JC, Nahmias A (1985) Patterns of herpetic keratitis in inbred mice. Invest Ophthalmol Vis Sci 26:1360–1367

    PubMed  CAS  Google Scholar 

  • Tenser RB, Hsiung GD (1977) Pathogenesis of latent herpes simplex virus infection of the trigeminal ganglion in guinea pigs: effects of age, passive immunization, and hydrocortisone. Infect Immun 16: 69–74

    PubMed  CAS  Google Scholar 

  • Thompson RL, Rogers SK, Zerhusen MA (1989) Herpes simplex virus neurovirulence and productive infection of neural cells is associated with a function which maps between 0.82 and 0.832 map units on the HSV genome. Virology 172: 435–450

    Article  PubMed  CAS  Google Scholar 

  • Von Hoff DD, Luckey M, Wallace J (1975) Herpes simplex virus type 2 meninigitis following herpes progenitalis. West J Med 123: 490–491

    Google Scholar 

  • Walz MA, Price RW, Hayashi K, Katz BJ, Notkins AL (1977) Effect of immunization on acute and latent infections of vaginouterine tissue with herpes simplex viruses types 1 and 2. J Infect Dis 135:744–752

    Article  PubMed  CAS  Google Scholar 

  • Wander AH, Bubel HC, McDowell SG (1987) The pathogenesis of herpetic ocular disease in the guinea pig. Arch. Arch Virol 95: 197–209

    Article  CAS  Google Scholar 

  • Wheeler CE Jr (1975) Pathogenesis of recurrent herpes simplex infections. J Invest Dermatol 65: 341–346

    Article  PubMed  Google Scholar 

  • Whitley RJ (1990) Herpes simplex viruses. In: Fields BN, Knipe DM (eds) Virology. Raven, New York, pp 1843–1887

    Google Scholar 

  • Whitley R, Arvin A, Prober C, Corey L, Burchett S, Plotkin S, Starr S, Jacobs R, Powell D, Nahmias A, Sumaya C, Edwards K, Alford C, Caddell G, Soong S-J (1991) Predictors of morbidity and mortality in neonates with herpes simplex virus infections. N Engl J Med 324: 450–454

    Article  PubMed  CAS  Google Scholar 

  • Whittum JA, McCulley JP, Niederkorn JY, Streilein JW (1984) Ocular disease induced in mice by anterior chamber inoculation of herpes simplex virus. Invest Ophthalmol Vis Sci 25:1065–1971

    PubMed  CAS  Google Scholar 

  • WuDunn D, Spear PG (1989) Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol 63: 52–58

    PubMed  CAS  Google Scholar 

  • Yen SSC, Reagan JW, Rosenthal MS (1965) Herpes simplex infection in the female genital tract. Obstet Gynecol 25: 479–492

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Stanberry, L.R. (1992). Pathogenesis of Herpes Simplex Virus Infection and Animal Models for Its Study. In: Rouse, B.T. (eds) Herpes Simplex Virus. Current Topics in Microbiology and Immunology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77247-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77247-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77249-8

  • Online ISBN: 978-3-642-77247-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics