Advertisement

Direct Manipulation of Physical Concepts in a Computerized Exploratory Laboratory

  • Vitor Duarte Teodoro
Part of the NATO ASI Series book series (volume 84)

Abstract

Computer microworlds are becoming more and more powerful for learning and teaching science. However, even a powerful computer microworld is not enough, by itself, to enable students to explore and learn about a formal domain. It is argued that it should be integrated with other media, especially books. In a computer microworld, direct manipulation techniques allow the implementation of direct manipulation of physical concepts, as it is shown with an example from physics — NEWTON, a computerized exploratory laboratory. In this computerized exploratory laboratory — a conceptual laboratory — the user can explore and experiment with concrete-abstract objects, confront multiple representations and pose and devise strategies to learn about the most fundamental phenomenon of Nature: motion.

Keywords

computer simulation physics software development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bliss, J., & Ogborn, J. (1989). Tools for exploratory learning. Journal of Computer Assisted Learning, 5, 37–50, 1989.Google Scholar
  2. 2.
    Cabrol, D. (1990). Le rôle de l’intelligence artificielle dans l’enseignement: l’Example de la Chimie. Proceedings of “Encontro Computadores no Ensino da Física e da Química” (pp. 59–60 ). Coimbra, Portugal.Google Scholar
  3. 3.
    Cuban, L. (1989). Neoprogressive visions and organizational realities, Harvard Educational Review, 59 (2), 217–222.Google Scholar
  4. 4.
    DiSessa, A. (1987). Artificial worlds and real experience. In R. W. Lawler & M. Yazdani (Eds.), Artificial Intelligence and Education, Vol. 1 (pp. 55–77 ). Norwood, NJ: Ablex.Google Scholar
  5. 5.
    DiSessa, A. (1982). Unlearning Aristotelian Physics: A study of knowledge-based learning. Cognitive Science, 6, 37–75.CrossRefGoogle Scholar
  6. 6.
    Driver, R. (1983). The pupil as scientist. Milton Keynes: Open University Press.Google Scholar
  7. 7.
    Educational Technology Center (1988). Making sense of the future. Harvard: Harvard Graduate School of Education.Google Scholar
  8. 8.
    Fischbein, E. (1990). Introduction. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education (pp. 1–13 ) Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. 9.
    Forman, G., & Pufall, P. B. (1988). Constructivism in the computer age: A reconstructive epilogue. In G. Forman & P. B. Pufall (Eds.), Constructivism in the Computer Age (pp. 235–250 ). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  10. 10.
    Hebenstreit, J. (1987). Simulation et pédagogie, une rencontre du troisième type. École Supérieure d’Electricité, Gif-Sur-Yvette.Google Scholar
  11. 11.
    Levin, J. A. & Waugh, M. (1988). Educational simulations, tools, games, and microworlds: Computer-based environments for learning. In M. Rabinowitz (Ed.), Computer simulations as research tools, International Journal of Educational Research, 12, 71–79.Google Scholar
  12. 12.
    McDermott, L. C. (1984). Critical review of research in the domain of mechanics. Research on Physics Education: proceeding of the first international workshop (pp. 137–182 ). Paris: CNRS.Google Scholar
  13. 13.
    O’Shea, T. (1990). Informal communication at the NATO Advanced Research Workshop Advanced Technologies in the Teaching of Mathematics and Science, Milton Keynes.Google Scholar
  14. 14.
    Papert, S. (1980) Mindstorms, children, computers and powerful ideas. NY: Basic Books.Google Scholar
  15. 15.
    Plomp, T., Pelgrum, W. J. & Sterrneman, A. H. M. (1990). Influence of computer use on schools curriculum: limited integration. Computer Education, 14 (2), 159–171.CrossRefGoogle Scholar
  16. 16.
    Schanck, R. C. (1986). Explanation patterns. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  17. 17.
    Schecker, H. (1990). The didactic potential of model-building systems for Physics education. Paper presented at the NATO Advanced Research Workshop Advanced Technologies in the Teaching of Mathematics and Science, Milton Keynes.Google Scholar
  18. 18.
    Schwartz, J. L. (1989). Intellectual mirrors: a step in the direction of making schools knowledge-making places. Harvard Educational Review, 59 (1), 51–61.Google Scholar
  19. 19.
    Schwartz, J. L. (1990). Software to think with. Proceedings of “Encontro Computadores no Ensino da Fisica e da Qutmica” (p. 51 ). Coimbra: Portugal.Google Scholar
  20. 20.
    Schwartz, J. L. (1990). Informal communication at the NATO Advanced Research Workshop Advanced Technologies in the Teaching of Mathematics and Science, Milton Keynes.Google Scholar
  21. 21.
    Shneiderman, B. (1983). Direct manipulation: A step beyhond programming languages. IEEE Computer, 16, 57–69.CrossRefGoogle Scholar
  22. 22.
    Striley, J. (1988). Physics for the rest of us. Educational Researcher, August-September, 7 - 10.Google Scholar
  23. 23.
    Teodoro, V. D. (1990). The computer as a conceptual lab: Learning dynamics with an exploratory environment. Paper presented at the NATO Advanced Research Workshop Advanced Technologies in the Teaching of Mathematics and Science, Milton Keynes.Google Scholar
  24. 24.
    Thigs, G. (1988). How forceful is intuition? Students’ difficulties in mechanics in relation to common sense. In Thijs, G. D., Boer, H. H., Mcfarlane, I. G. & Stoll, C. J. (Eds.), Learning difficulties and teaching strategies in secondary school science and mathematics, Proceedings of a Regional Conference, Botswana. Amsterdam: Free University Press.Google Scholar
  25. 25.
    Viennot, L. (1979). Raisonnement spontané en dynamique élémentaire. Paris: Hermann.Google Scholar
  26. 26.
    Wong, D. (1987). Teaching A level physics through microcomputer dynamic modelling: II. Evaluation of teaching. Journal of Computer Assisted Learning, 3, 164–175.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Vitor Duarte Teodoro
    • 1
  1. 1.Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaMonte de CaparicaPortugal

Personalised recommendations