Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 22))

Abstract

Carbon materials are unique in many ways. One distinction relates to the various allotropic forms these materials can assume. Under ambient conditions, the graphite phase with strong in-plane trigonal bonding is the stable phase, as indicated by the phase diagram of Fig. 2.1 [2.1, 2]. Under the application of high pressure and high temperature (which are somewhat reduced when catalyst particles like iron or nickel are used), transformation to the diamond structure takes place. Once the pressure is released, diamond remains essentially stable under ambient conditions although, in principle, it will very slowly transform to the thermodynamical stable form of solid carbon which is graphite. However, when exposed to various perturbations, diamond will transform back to the equilibrium graphite phase. In this phase, the structure is highly anisotropic, exhibiting, for example, metallic behavior in the basal(ab) plane and poor electrical conductivity along the c-axis [2.3]. In contrast, diamond is an isotropic cubic wide gap semiconductor [2.4]. In terms of mechanical properties, graphite is the stiffest material in nature (has the highest in-plane elastic modulus), while diamond is the hardest (least deformable) material. Of all materials, diamond along with graphite (in-plane) exhibit the highest thermal conductivity and the highest melting point [2.5]. Diamond also has the highest atomic density of any solid (Table 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.P. Bundy: J. Geophys. Res. 85, 6930 (1980)

    Article  ADS  Google Scholar 

  2. F.P. Bundy: In Solid State Physics under Pressure: Recent Advance with Anvil Devices, ed. by S. Minomura (Reidel, Dordrecht 1985) p.1

    Google Scholar 

  3. B.T. Kelly: Physics of Graphite (Applied Science, London 1981)

    Google Scholar 

  4. C. Kittel: Introduction to Solid State Physics, 6th edn. (Wiley, New York 1986)

    Google Scholar 

  5. M.S. Dresselhaus, J. Steinbeck: Tanso 132, 44 (1988)

    Google Scholar 

  6. J. Krumhansl, H. Brooks: J. Chem. Phys. 21, 1663 (1953)

    Article  ADS  Google Scholar 

  7. J. Robertson: Adv. Phys. 35, 317 (1986)

    Article  ADS  Google Scholar 

  8. S. Prawer, C.J. Rossouw: J. Appl. Phys. 63, 4435 (1988)

    Article  ADS  Google Scholar 

  9. Y. Bar-Yam, T.D. Moustakas: Nature 342, 786 (1989)

    Article  ADS  Google Scholar 

  10. R.W.G. Wyckoff: Crystal Structures (Interscience, New York 1964)

    Google Scholar 

  11. M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, H.A. Goldberg: Graphite Fibers and Filaments, Springer Ser. Mater. Sci., Vol.5 (Springer, Berlin, Heidelberg 1988)

    Book  Google Scholar 

  12. I.L. Spain: In Chemistry and Physics of Carbon, ed. by P.L. Walker Jr., P.A. Thrower (Dekker, New York 1981) p.119

    Google Scholar 

  13. S.B. Austerman: In Chemistry and Physics of Carbon, ed. by P.L. Walker Jr. (Dekker, New York 1968) p. 160

    Google Scholar 

  14. Y. Kaburagi: Priv. communication (1991)

    Google Scholar 

  15. A.W. Moore: In Chemistry and Physics of Carbon, ed. by P.L. Walker Jr., P.A. Thrower (Dekker, New York 1973) p.69

    Google Scholar 

  16. K. Matsubara, T. Tsuzuku, M. Murakami: Extended Abstracts, 20th Biennial Conf. on Carbon (1991) p.556

    Google Scholar 

  17. H. Yasujima, M. Murakami, S. Yoshimura: Appl. Phys. Lett. 49, 499 (1986)

    Article  ADS  Google Scholar 

  18. Y. Hishiyama, S. Yasuda, M. Inagaki: J. Mater. Sci. 23, 3722 (1988)

    Article  Google Scholar 

  19. M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino, K. Morita: Carbon 27, 253 (1988)

    Article  Google Scholar 

  20. Y. Hishiyama, Y. Kaburagi, M. Inagaki: In Chemistry and Physics of Carbon, ed. by P.A. Thrower (Dekker, New York 1991) p.1

    Google Scholar 

  21. L. Salamanca-Riba, G. Braunstein, M.S. Dresselhaus, J.M. Gibson, M. Endo: Nucl. Instr. Meth. Phys. Res. B 7 & 8, 487 (1985)

    Article  ADS  Google Scholar 

  22. G.M. Jenkins, K. Kawamura: Polymeric Carbons — Carbon Fibre, Glass and Char (Cambridge Univ. Press, London 1976)

    Google Scholar 

  23. R.R. Saxena, R.H. Bragg: J. Non-Cryst. Solids 28, 45 (1978)

    Article  ADS  Google Scholar 

  24. F. Rousseaux, D. Tchoubar: Carbon 15, 55, 63 (1977)

    Article  Google Scholar 

  25. A. Oberlin: In Chemistry and Physics of Carbon, ed. by P.A. Thrower (Dekker, New York 1989) p.1

    Google Scholar 

  26. A. Yoshida, Y. Kaburagi, Y. Hishiyama: Carbon 29, 1107 (1991)

    Article  Google Scholar 

  27. Y. Shiraishi: Introduction to Carbon Materials (Carbon Society of Japan, Tokyo 1984) pp.29–40 [Kaitei Tansozairyo Nyumon (in Japanese)]

    Google Scholar 

  28. Y. Kaburagi, S. Yasuda, Y. Hishiyama: Extended Abstracts, 18th Biennial Conf. on Carbon (1987) p.476

    Google Scholar 

  29. Y. Kaburagi, Y. Hishiyama, D.F. Baker, R.H. Bragg: Phil. Mag. B 54, 381 (1986)

    Google Scholar 

  30. K. Ueno, T. Kumihashi, K. Saiki, A. Koma: Jpn. J. Appl. Phys. Lett. 27, L759 (1988)

    Article  ADS  Google Scholar 

  31. M.S. Dresselhaus, G. Dresselhaus: Adv. Phys. 30, 139 (1981)

    Article  ADS  Google Scholar 

  32. H. Zabel, S.A. Solin (eds.): Graphite Intercalation Compounds I: Structure and Dynamics, Springer Ser. Mater. Sci., Vol.14 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  33. W. Rüdorff, E. Shultze: Z. anorg. allg. Cham. 277, 156 (1954)

    Article  Google Scholar 

  34. F.P. Bundy, J.S. Kasper: J. Chem. Phys. 46, 3437 (1967)

    Article  ADS  Google Scholar 

  35. R.C Dries: Ann. Rev. Mater. Sci. 17, 161 (1987)

    Article  ADS  Google Scholar 

  36. J.C. Angus, C.C. Hayman: Science 241, 877 (1988)

    Article  Google Scholar 

  37. J.C. Angus, C.C. Hayman: Science 241, 913 (1988)

    Article  ADS  Google Scholar 

  38. W.A. Yarbrough, R. Messier: Science 247, 688 (1990)

    Article  ADS  Google Scholar 

  39. B.V. Spitsyn, L.L. Bouitov, B.V. Derjaguin: J. Cryst. Growth 52, 219 (1981)

    Article  ADS  Google Scholar 

  40. J. Narayan: J. Mater. Res. 5, 2414 (1990)

    Article  ADS  Google Scholar 

  41. S. Prawer, A. Hoffman, R. Ksh: Appl. Phys. Lett. 57, 2187 (1990)

    Article  ADS  Google Scholar 

  42. A. Feldman, H.P.R. Frederikse, X.T. Ying: Proc. SPIE 1146, 78 (1990)

    ADS  Google Scholar 

  43. M.W. Geis: In Diamond, Boron Nitride, Silicon Carbide and Related Wide Bandgap Semiconductors, ed. by J.T. Glass, R.F. Messier, N. Fujimori. Proc. MRS 162, 15 (1990)

    Google Scholar 

  44. J. Narayan, V.P. Godbole, C-W. White: Science 252, 416 (1991)

    Article  ADS  Google Scholar 

  45. P. Koidl, P. Oelhafen (eds.): Amorphous Hydrogenated Carbon Films, Proc. E-MRS 17 (Les Editions de Physique, Paris 1987)

    Google Scholar 

  46. G.H. Johnson, A.R. Badzian, M.W. Geis (eds.): Diamond and Diamond-Like Materials Synthesis (MRS, Pittsburgh, PA 1988)

    Google Scholar 

  47. D.R. Menzie, R.C. Mhedram, N. Savvides, D.J.H. Cockayne: Thin Solid Films 108, 247 (1983)

    Article  ADS  Google Scholar 

  48. J. Robertson, E.P. O’Rielly: Phys. Rev. B35, 2946 (1987)

    ADS  Google Scholar 

  49. R. Kalish, E. Adel: In Properties and Preparation of Amorphous Carbon Films, ed. by J.J. Pouch, S.A. Alterowitz, Mater. Sci. Forum, Vols. 52 & 53 (Trans Tech., Aedermannsdorf, Switzerland 1990) p.427

    Google Scholar 

  50. Y. Lifshitz, S.R. Kasi, J.W. Rabalais: Materials Science Forum 52&53, 237 (1990) “Properties and characterization of amorphous carbon films”, ed. by J.J. Pouch, S.A. Alterovitz, published by the Solid State Institute, Technion, Israel

    Google Scholar 

  51. M.S. Dresselhaus, G. Dresselhaus: In Light Scattering in Solids HI, ed. by M. Cardona, G. Güntherodt, Topics Appl. Phys., Vol.51 (Springer, Berlin, Heidelberg 1982) Chap.2

    Google Scholar 

  52. R. Al-Jishi, G. Dresselhaus: Phys. Rev. B 26, 4514 (1982)

    ADS  Google Scholar 

  53. A. Zunger: Phys. Rev. B 17, 626 (1978)

    ADS  Google Scholar 

  54. J.W. Mlure: In Proc. Ml Conf. on Semimetals and Narrow Gap Semiconductors, ed. by D.L. Carter, R.T. Bate (Pergamon, New York 1971) p. 127

    Google Scholar 

  55. I.L. Spain: In Chemistry and Physics of Carbon, ed. by P.L. Walker Jr., P.A. Thrower (Dekker, New York 1973) p.1

    Google Scholar 

  56. V. Bayot, L. Piraux, J.P. Michenaud, J.P. Issi, M. Lelaurain, A. Moore: Phys. Rev. B 41, 11770 (1990)

    ADS  Google Scholar 

  57. D.F. Baker, R.H. Bragg: Phys. Rev. B 28, 2219 (1983)

    ADS  Google Scholar 

  58. H.R. Philipp: Phys. Rev. B 16, 2896 (1977)

    ADS  Google Scholar 

  59. E.A. Taft, H.R. Philipp: Phys. Rev. 138, A197 (1965)

    Article  ADS  Google Scholar 

  60. R. Bacon: J. Appl. Phys. 31, 283 (1960)

    Article  ADS  Google Scholar 

  61. J.E. Field: In Properties of Diamond, ed. by J.E. Field (Academic, New York 1979) p.281

    Google Scholar 

  62. F. Herman, R.L. Kortum, C.D. Kuglin, R.A. Short: J. Phys. Soc. Jpn. (Suppl.) 21, 7 (1966)

    Google Scholar 

  63. W. Saslow, T.K. Bergstresser, M.L. Cohen: Phys. Rev. Lett. 16, 354 (1966)

    Article  ADS  Google Scholar 

  64. C.D. Clark, E.W.J. Mitchell, B.J. Parsons: In The Properties of Diamond, ed. by J.E. Field (Academic, New York 1979) p.23

    Google Scholar 

  65. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.O. Klemens (eds.): In Thermo physical Properties of Matter, Vol.2 (Plenum, New York 1970) diamond, p. 10;

    Google Scholar 

  66. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.O. Klemens (eds.): In Thermo physical Properties of Matter, Vol.2 (Plenum, New York 1970) pyrolytic graphite, p.32

    Google Scholar 

  67. T.R. Anthony, W.F. Banholzer, J.F. Fleischer, L.-H. Wei, P.K. Kuo, R.L. Thomas, R.W. Pryor: Phys. Rev. B 42, 1104 (1990)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dresselhaus, M.S., Kalish, R. (1992). Carbon Materials: Graphite, Diamond and Others. In: Ion Implantation in Diamond, Graphite and Related Materials. Springer Series in Materials Science, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77171-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77171-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77173-6

  • Online ISBN: 978-3-642-77171-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics