Fluid Flow Visualization

  • Frits H. Post
  • Theo van Walsum
Part of the Computer Graphics: Systems and Applications book series (COMPUTER GRAPH.)


This chapter presents an overview of techniques for visualization of fluid flow data. As a starting point, a brief introduction to experimental flow visualization is given. The rest of the chapter concentrates on computer graphics flow visualization. A pipeline model of the flow visualization process is used as a basis for presentation. Conceptually, this process centres around visualization mapping, or the translation of physical flow parameters to visual representations. Starting from a set of standard mappings partly based on equivalents from experimental visualization, a number of data preparation techniques is described, to prepare the flow data for visualization. Next, a number of perceptual effects and rendering techniques are described, and some problems in visual presentation are discussed. The chapter ends with some concluding remarks and suggestions for future development.


Computer Graphic Flow Visualization Volume Rendering Computational Fluid Dynamics Simulation Integral Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.K. Batchelor (1967). An Introduction to Fluid Dynamics. Cambridge University Press.MATHGoogle Scholar
  2. [2]
    F.H. Bertrand, P.A. Tanguy (1988). Graphical Representation of Two-dimensional Fluid Flow by Stream Vectors. Communications in Applied Numerical Methods, 4:213–217.MATHCrossRefGoogle Scholar
  3. [3]
    J.F. Blinn (1989). What We Need Around Here Is More Aliasing/Return of the Jaggy. IEEE Computer Graphics & Appl., 9(l/2):75–79 and 82–89.CrossRefGoogle Scholar
  4. [4]
    M. Briscolini, P. Santangelo (1991). Animation of Computer Simulations of Two-Dimensional Turbulence and Three-Dimensional Flows. IBM Journal of Research and Development, 35(1/2):119–138.CrossRefGoogle Scholar
  5. [5]
    W.F. Bronsvoort, F.W. Jansen, F.H. Post (1991). Design and Display of Solid Models. In I. Hermann, G. Garcia, editor, Advances in Computer Graphics VI, pp. 1–57. Springer-Verlag.Google Scholar
  6. [6]
    S. Bryson, C. Levit (1991). The Virtual Windtunnel: An Environment for the Exploration of Three-Dimensional Unsteady Flows. In G.M. Nielson, L. Rosenblum, editors, Proceedings Visualization ’91, pp. 17–24. IEEE Computer Society Press.CrossRefGoogle Scholar
  7. [7]
    P.G. Buning (1989). Numerical Algorithms in CFD Post-Processing. von Karman Institute for Fluid Dynamics, Lecture Series 1989–07.Google Scholar
  8. [8]
    H.H. Chen, T.S. Huang (1988). A Survey of Construction and Manipulation of Octrees. Computer Vision, Graphics and Image Processing, 43:403–431.Google Scholar
  9. [9]
    M.S. Chong, A.E. Perry, B.J. Cantwell (1990). A General Classification of Three-dimensional Flow Fields. Physics of Fluids A, 2(5):765–777.MathSciNetCrossRefGoogle Scholar
  10. [10]
    R.R. Dickinson (1991). Interactive Analysis of the Topology of 4D Vector Fields. IBM Journal of Research and Development, 35(l/2):59–66.CrossRefGoogle Scholar
  11. [11]
    D.S. Dyer (1990). A Dataflow Toolkit for Visualization. IEEE Computer Graphics & Appl., 10(4):60–69.CrossRefGoogle Scholar
  12. [12]
    D.S. Ebert, R.E. Parent (1990). Rendering and Animation of Gaseous Phenomena by Combining Fast Volume and Scanline A-buffer Techniques. Computer Graphics, 24(4):357–366.CrossRefGoogle Scholar
  13. [13]
    J.D. Foley, A. van Dam, S. Feiner, J. Hughes (1990). Computer Graphics: Principles and Practice, second edition. Addison-Wesley Publishing Company.Google Scholar
  14. [14]
    M. Frühauf (1991). Combining Volume Rendering with Line and Surface Rendering. In F.H. Post, W. Barth, editors, Eurographics ’91, pp. 21–32. North Holland.Google Scholar
  15. [15]
    R.S. Gallagher (1991). Span Fütering: an Optimization Scheme for Volume Visualization of Large Finite Element Models. In G.M. Nielson, L. Rosenblum, editors, Proceedings Viualization ’91, pp. 68–75. IEEE Computer Society Press.CrossRefGoogle Scholar
  16. [16]
    R.S. Gallagher, J.C. Nagtegaal (1989). An Efficient 3-D Visualization Technique for Finite Element Models and Other Coarse Volumes. Computer Graphics, 23(3):185–194.CrossRefGoogle Scholar
  17. [17]
    M. Geiben, M. Rumpf (1992). Visualization of Finite Elements and Tools for Numerical Analysis. In F.H. Post, A.J.S. Hin, editors, Advances in Scientific Visualization. Springer-Verlag.Google Scholar
  18. [18]
    J.J. Gibson (1950). The Perception of the Visual World. Houghton Mifflin Co.Google Scholar
  19. [19]
    J.J. Gibson (1979). The Ecological Approach to Visual Perception. Houghton Mifflin Co.Google Scholar
  20. [20]
    A. Globus, C. Levit, T. Lasinski (1991). A Tool for Visualizing the Topology of Three-Dimensional Vector Fields. In G.M. Nielson, L. Rosenblum, editors, Proceedings of Viualization ’91, pp. 33–40. IEEE Computer Society Press.CrossRefGoogle Scholar
  21. [21]
    R.B. Haber, D.A. McNabb (1990). Visualization Idioms: A Conceptual Model for Scientific Visualization Systems. In L.J. Rosenblum, G.M. Nielson, B. Shriver, editor, Visualization in Scientific Computing, pp. 74–92. IEEE Computer Society Press.Google Scholar
  22. [22]
    D.D. Hearn, P. Baker (1991). Scientific Visualization. Eurographics Technical Report Series EG91 TN6.Google Scholar
  23. [23]
    P.S. Heckbert (1986). Survey of Texture Mapping. IEEE Computer Graphics & Appl., 6(11):56–67.CrossRefGoogle Scholar
  24. [24]
    J. Helman, L. Hesselink (1989). Analysis and Visualization of Flow Topology in Numerical Data Sets. In IUTAM Symposium on Topological Fluid Mechanics, Cambridge, England. Google Scholar
  25. [25]
    J. Helman, L. Hesselink (1989). Automated Analysis of Fluid, Flow Topology, 3D Visualization and Display Technologies. In Proc. SPIE 1083, pp. 825–835. SPIE, Bellingham, Wash.Google Scholar
  26. [26]
    J. Helman, L. Hesselink (1989). Representation and Display of Vector Field Topology in Fluid Flow Data Sets. IEEE Computer, 22(8):27–36.Google Scholar
  27. [27]
    J. Helman, L. Hesselink (1990). Surface Representations of Two- and Three-Dimensional Fluid Flow Topology. In A. Kaufman, editor, Proceedings Visualization ’90, pp. 6–13. IEEE Computer Society Press.Google Scholar
  28. [28]
    J. Helman, L. Hesselink (1991). Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics & Appl., 11(3):36–46.CrossRefGoogle Scholar
  29. [29]
    L. Hesselink, J. Helman (1987). Evalution of Flow Topology from Numerical Data. Invited AIAA-paper, 87–1181-CP.Google Scholar
  30. [30]
    L. Hesselink, J. Helman, K. Wu (1988). Visualization and Interpretation of 3-D Scientific Data Sets. In ICALEO ’88-Conference, Santa Clara CA. Google Scholar
  31. [31]
    W. Hibbard, D. Santek (1989). Visualizing Large Data Sets in the Earth Sciences. IEEE Computer, 22(8):53–57.Google Scholar
  32. [32]
    A.J.S. Hin, E. Boender, F.H. Post (1990). Visualization of 3D Scalar Fields using Ray Casting. In Y. Le Lous, M. Grave, editor, Proceedings of the Eurographics Workshop on Visualization in Scientific Computing. to be published by Springer-Verlag.Google Scholar
  33. [33]
    J.P.M. Hultquist (1990). Interactive Numeric Flow Visualization Using Stream Surfaces. Computing Systems in Engineering, 1(2–4):349–353.CrossRefGoogle Scholar
  34. [34]
    A. Kaufman, editor (1990). Volume Visualization. IEEE Computer Society Press.Google Scholar
  35. [35]
    A. Kaufman, E. Shimony (1986). 3D Scan Conversion Algorithms for Voxel-Based Graphics. In F. Crow, S.M. Pizer, editors, Proceedings 1986 Workshop on Interactive SD Graphics, pp. 45–75. ACM.Google Scholar
  36. [36]
    A. Kaufman, R. Yagel, D. Cohen (1990). Intermixing Surface and Volume Rendering. In K.H. Höhne, H. Fuchs, S.M. Pizer, editors, 3D Imaging in Medicine: Algorithms, Systems, Applications, pp. 217–227. Springer-Verlag.Google Scholar
  37. [37]
    K.A. Kroos (1984). Computer Graphics Flow Visualization Techniques for Three-Dimensional Flow Visualization. In T.L. Kunii, editor, Frontiers in Computer Graphics, pp. 129–145. Springer-Verlag.Google Scholar
  38. [38]
    M. Levoy (1988). Display of Surfaces from Volume Data. IEEE Computer Graphics & Appl., 8(3):29–37.CrossRefGoogle Scholar
  39. [39]
    M. Levoy (1990). A Hybrid Ray Tracer for Rendering Polygons and Volume Data. IEEE Computer Graphics & Appl., 10(2):33–40.CrossRefGoogle Scholar
  40. [40]
    W.E. Lorensen, H.E. Cline (1987). Marching Cubes: a High Resolution 3D Surface Construction Algorithm. Computer Graphics, 21(4):163–169.CrossRefGoogle Scholar
  41. [41]
    W. Merzkirch (1987). Flow Visualisation, second edition. Academic Press Inc.Google Scholar
  42. [42]
    G.M. Nielson, B.S. Shriver, L.J. Rosenblum, editors (1990). Visualization in Scientific Computing. IEEE Computer Socitety Press.Google Scholar
  43. [43]
    T.V. Papathomas, J.A. Schiavone, B. Julesz (1988). Applications of Computer Graphics to the Visualization of Meteorological Data. Computer Graphics, 22(4):327–335.CrossRefGoogle Scholar
  44. [44]
    W.T. Reeves (1983). Particle Systems - a Technique for Modelling a Class of Fuzzy Objects. ACM Transactions on Graphics, 2(2):91–108.CrossRefGoogle Scholar
  45. [45]
    W.T. Reeves, R. Blau (1985). Approximate and Probabilistic Algorithms for Shading and Rendering Structured Particle Systems. Computer Graphics, 19(3):313–322.CrossRefGoogle Scholar
  46. [46]
    M.A. Sabin (1985). Contouring - the State of the Art. In R.A. Earnshaw, editor, Fundamental Algorithms for Computer Graphics, pp. 411–482. Springer-Verlag.Google Scholar
  47. [47]
    H. Samet (1990). The Design and Analysis of Spatial Data Structures and Applications of Spatial Data Structures. Addison-Wesley Publishing Company.Google Scholar
  48. [48]
    W.J. Schroeder, C.R. Volpe, W.E. Lorensen (1991). The Stream Polygon: a Technique for 3D Vector Field Visualization. In L. Rosenblum, G.M. Nielson, editor, Proceedings Visualization ’91, pp. 126–132. IEEE Computer Society Press.CrossRefGoogle Scholar
  49. [49]
    P. Shirley, A. Tuchman (1990). A Polygonal Approximation to Direct Scalar Volume Rendering. Computer Graphics, 24(5):63–69.CrossRefGoogle Scholar
  50. [50]
    K. Sims (1990). Particle Animation and Rendering Using Data Parallel Computation. Computer Graphics, 24(4):405–413.CrossRefGoogle Scholar
  51. [51]
    D. Speray, S. Kennon (1990). Volume Probes: Interactive Data Expioration on Arbitrary Grids. Computer Graphics, 24(5):5–12.CrossRefGoogle Scholar
  52. [52]
    J. Stolk, J.J. van Wijk (1992). Surface-particles for 3D Flow Visualization. In A.J.S. Hin, F.H. Post, editor, Advances in Scientific Visualization. Springer-Verlag.Google Scholar
  53. [53]
    T. Strid, A. Rizzi, J. Oppelstrup (1989). Development and Use of some Flow Visualization Algorithms. von Karman Institute for Fluid Dynamics, Lecture Series 1989–07.Google Scholar
  54. [54]
    Wavefront Technologies, editor (1990). The Data Visualizer Version 1.0, Users Guide, 1990. Wavefront Technologies.Google Scholar
  55. [55]
    S.J. Thorpe (1990). Image Processing by the Human Visual System. Eurographics Technical Report Series EG90 TN4.Google Scholar
  56. [56]
    C. Upson, et al. (1989). The Application Visualization System: a Computational Environment for Scientific Visualization. IEEE Computer Graphics & Appl., 9(4):30–42.CrossRefGoogle Scholar
  57. [57]
    C. Upson, M. Keeler (1988). V-Buffer: Visible Volume Rendering. Computer Graphics, 22(4):59–64.CrossRefGoogle Scholar
  58. [58]
    M. van Dyke (1982). An Album of Fluid Motion. The Parabolic Press.Google Scholar
  59. [59]
    T. van Walsum, A.J.S. Hin, J. Versloot, F.H. Post (1992). Efficient Hybrid Rendering of Volume Data and Polygons. In A.J.S. Hin, F.H. Post, editor, Advances in Scientific Visualization. Springer-Verlag.Google Scholar
  60. [60]
    J.J. van Wijk (1990). A Raster Graphics Approach to Flow Visualization. In D.A. Duce, C.E. Vandoni, editor, Eurographics ’90, pp. 251–259.Google Scholar
  61. [61]
    J.J. van Wijk (1990). Rendering Lines on Curved Surfaces. In Y. Le Lous, M. Grave, editor, Proceedings of the Eurographics Workshop on Visualization in Scientific Computing. Springer-Verlag.Google Scholar
  62. [62]
    J.J. van Wijk (1991). Spot Noise - Texture Synthesis for Data Visualization. Computer Graphics, 25(4):309–318.CrossRefGoogle Scholar
  63. [63]
    J.J. van Wijk (1992). Rendering Surface Particles. submitted for publication. Google Scholar
  64. [64]
    L. Yaeger, C. Upson, R. Myers (1986). Combining Physical and Visual Simulation - Creation of the Planet Jupiter for the Film “2010”. Computer Graphics, 20(4):85–93.CrossRefGoogle Scholar
  65. [65]
    W.J. Yang, editor (1989). Handbooh of Flow Visualization. Hemisphere Publishing Corporation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Frits H. Post
  • Theo van Walsum

There are no affiliations available

Personalised recommendations