Facet Coexistence in the Roughening Transition of Ag(110)

  • H. G. Hörnis
  • E. H. Conrad
  • E. Vlieg
  • I. K. Robinson
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 61)


We have studied the thermal behavior of the Ag(110) surface by synchrotron x-ray diffraction. In-plane diffraction data (Qz ≈ 0) agrees with earlier work and can be fit to a power law form. Out-of-plane data (Qz,max=0.7), however, indicates the existence of two coexisting phases below the roughening transition: flat (110) oriented regions separated by inclined rough regions. The relative coverage of these two phases is found to depend on the temperature. Thus, the roughening process can be viewed as a continuous replacement of the flat faceted regions by the rough phase. Using the Wulff construction, we are able to describe the temperature dependence of the relative phase concentrations and extrapolate to an estimate of the Ag(110) roughening temperature.


Tilt Angle Helium Atom Oriented Region Broad Component Free Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.C. Heyraud and J.J. Metois, Surf. Sci. 128, 334 (1983).ADSCrossRefGoogle Scholar
  2. J. Cryst Growth 50, 571 (1990).Google Scholar
  3. [2]
    S.T. Chui and J.D. Weeks, Phys. Rev. B 14, 4978 (1976).ADSCrossRefGoogle Scholar
  4. [3]
    G.A. Held, J.L. Jordan-Sweet, P.M. Horn, A. Mak, and R.J. Birgeneau, Phys. Rev. Lett. 59, 2075 (1987).ADSCrossRefGoogle Scholar
  5. [4]
    I.K. Robinson, E.H. Conrad and D.S. Reed, Journal de Physique (Paris) 51, 103 (1990).CrossRefGoogle Scholar
  6. [5]
    J. Villain, D.R. Grempel and J. Lapujoulade, J. Phys. F 15, 809 (1985).ADSCrossRefGoogle Scholar
  7. [6]
    E.H. Conrad, L.R. Allen, D.L. Blanchard and T. Engel, Surf. Sci. 187, 265 (1987).ADSCrossRefGoogle Scholar
  8. [7]
    Y. Cao and E.H. Conrad, Phys. Rev. Lett. 64, 447 (1990).ADSCrossRefGoogle Scholar
  9. H.-N. Yang, T.-M. Lu, and G.-C. Wang, Phys. Rev. Lett. 62, 2148 (1989).ADSCrossRefGoogle Scholar
  10. [8]
    I.K. Robinson, Phys. Rev. B 33, 3830 (1986).ADSCrossRefGoogle Scholar
  11. [9]
    C.S. Lent and P.I. Chohen, Surf. Sci. 139, 121 (1984).ADSCrossRefGoogle Scholar
  12. [10]
    M. Wortis, in Chemistry and Physics of Solid Surfaces, Vol. VII, ed. R. Vanselow and R. Howe (Springer, Berlin, 1988).Google Scholar
  13. [11]
    G. Wullf, Z. Krist. 34 449 (1901).Google Scholar
  14. H. van Beijeren and I. Nolden, in Structure and Dynamics of Surfaces II, ed. W. Schommers and P. von Blankenhagen (Springer, Berlin, 1987).Google Scholar
  15. [12]
    The assumed form of the cusp is such that it has a discontinuous derivative in the [110] direction. The surfaces roughens if the cusp disappears or rounds.Google Scholar
  16. [13]
    B.M. Ocko and S.G.J. Mochrie, Phys. Rev. B 38, 7378 (1988).ADSCrossRefGoogle Scholar
  17. R.J. Phaneuf and E.D. Williams, Phys. Rev. Lett 58, 2563 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. G. Hörnis
    • 1
  • E. H. Conrad
    • 1
  • E. Vlieg
    • 2
  • I. K. Robinson
    • 2
  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA
  2. 2.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations