Skip to main content

The Regulation of Organelle Function Through Changes in Their Volume

  • Chapter
Book cover Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 14))

  • 55 Accesses

Abstract

Although a search of the literature provides evidence for morphological changes in many subcellular organelles in response to a variety of stimuli, the only subcellular organelle whose volume regulation has been studied in detail is the mitochondrion. For this organelle there is evidence for an important physiological role for volume regulation, thus this chapter will focus on the regulation of mitochondrial volume and its metabolic consequences. I will first review the mechanisms involved in volume homeostasis and secondly describe how, in the liver at least, mitochondrial volume may also be regulated by extrinsic factors such as hormones. I will then describe how such volume regulation may have profound effects on mitochondrial metabolism that are important for the overall effects of the hormones on liver metabolism. I will suggest that similar effects may follow changes in cellular volume such as those described by Haussinger (this Vol.). The evidence for changes in the mitochondrial volume induced by physiological stimuli in other tissues will also be reviewed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam PAJ, Haynes RC (1969) Control of mitochondrial CO2 fixation by glucagon, epinephrine and cortisol. J Biol Chem 224: 6444–6450

    Google Scholar 

  • Agius L, Chowdhury MH, Alberti KGMM (1986) Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J 239: 593–601

    PubMed  CAS  Google Scholar 

  • Altin JG, Bygrave FL (1986) Synergistic stimulation of Ca2+ uptake by Ca2+-mobilizing hormones in the perfused rat liver. A role for mitochondria in long term Ca2+ homeostasis. Biochem J 238: 653–661

    PubMed  CAS  Google Scholar 

  • Altin JG, Bygrave FL (1987) Ca2+ uptake stimulated by the synergistic action of glucagon and Ca2+-mobilizing agents in the perfused rat livef occurs through the activation of a unidirectional Ca2+ influx pathway. Biochem Biophys Res Commun 142: 745–753

    PubMed  CAS  Google Scholar 

  • Aprille JR (1988) Regulation of the mitochondrial adenine nucleotide pool size in liver, mechanism and metabolic role. FASEB J 2: 2547–2556

    PubMed  CAS  Google Scholar 

  • Armston AE, Halestrap AP, Scott RD (1982) The nature of the changes in liver mitochondrial function induced by glucagon treatment of rats. The effects of intramitochondrial volume, aging and benzyl alcohol. Biochim Biophys Acta 681: 429–439

    PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet F, McCormack JG, Jeanrenaud B (1986) Vasopressin and/or glucagon rapidly increases mitochondrial calcium and oxidative enzyme activities in the perfused rat liver. J Biol Chem 261: 8799–8804

    PubMed  CAS  Google Scholar 

  • Baltscheffsky M, Nyren P (1984) The synthesis and utilization of inorganic pyrophosphate. N Compr Biochem 9: 187–197

    CAS  Google Scholar 

  • Baquet A, Meijer AJ, Hue L (1991) Hepatocyte swelling increases inositol 1,4,5- trisphosphate, calcium and cyclic AMP concentration but antagonizes phosphorylase activation by Ca2+-dependent hormones. FEBS Lett 278: 103–106

    PubMed  CAS  Google Scholar 

  • Baykov AA, Volk SE, Unguryte A (1989a) Inhibition of inorganic pyrophosphatase of animal mitochondria by calcium. Arch Biochem Biophys 273: 287–291

    PubMed  CAS  Google Scholar 

  • Baykov AA, Pavlov AR, Kasho VN, Avaeva SM (1989b) Allosteric regulation of yeast inorganic pyrophosphatase by substrate. Arch Biochem Biophys 273: 301–308

    PubMed  CAS  Google Scholar 

  • Bear CE (1990) A nonselective cation channel in rat liver cells is activated by membrane stretch. Am J Physiol 258: C421–C428

    PubMed  CAS  Google Scholar 

  • Beatrice MC, Palmer JW, Pfeiffer DR (1980) The relationship between mitochondrial membrane permeability, membrane potential and the retention of Ca2+ by mitochondria. J Biol Chem 255: 8663–8671

    PubMed  CAS  Google Scholar 

  • Beavis AD, Garlid KD (1990) Evidence for the allosteric regulation of the mitochondrial H+/K+ antiporter by matrix protons. J Biol Chem 265 (5): 2538–2545

    PubMed  CAS  Google Scholar 

  • Beavis AD, Brannan RD, Garlid KD (1985) Swelling and contraction of the mitochondrial matrix. 1. A structural interpretation of the relationship between light scattering and mitochondrial volume. J Biol Chem 260: 13424–13433

    PubMed  CAS  Google Scholar 

  • Benz R (1985) Porin from bacterial and mitochondrial outer membrane. CRC Crit Rev Biochem 19: 145–190

    PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J (1990) Behaviour of mitochondria in the living cell. Int Rev Cytol 122: 1–63

    PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J, Seipel K-H, Voth M, Ploem JS (1983) Fluorimetry of mitochondria in cells vitally stained with DASPMI or Rhodamine 6 GO. Cell Biochem Funct 1: 147–155

    PubMed  CAS  Google Scholar 

  • Bernadi P, Pozzan M, Azzone GF (1982) Mitochondrial oscillation and activation of H+/cation exchange. J Bioenerg Biomembr 14: 387–403

    Google Scholar 

  • Bernadi P, Angrilli A, Ambrosin V, Azzone FA (1989) Activation of latent K+ uniport in mitochondria treated with the ionophore A23187. J Biol Chem 264: 18902–18906

    Google Scholar 

  • Boos K-S, Schlimme E (1983) A model for metallo-protein catalysed ADP, ATP transport in mitochondria. FEBS Lett 160: 11–15

    PubMed  CAS  Google Scholar 

  • Brdiczka D, Bucheler K, Kottke M, Adams V, Nalam VK (1990) Characterization and metabolic function of mitochondrial contact sites. Biochim Biophys Acta 1018 (2–3): 234–238

    PubMed  CAS  Google Scholar 

  • Brierley GP, Jung DW (1988) K+/H+ antiport in mitochondria. J Bioenerg Biomembr 20: 193–209

    PubMed  CAS  Google Scholar 

  • Brierley GP, Jung DW (1990) Kinetic properties of the K+/H+ antiport of heart mitochondria. Biochemistry 29: 408–415

    PubMed  CAS  Google Scholar 

  • Brierley GP, Davis M, Jung DW (1987) Respiration-dependent uptake and extrusion of Mg2+ by isolated heart mitochondria. Arch Biochem Biophys 253: 322–332

    PubMed  CAS  Google Scholar 

  • Brown GC, Lakinthomas PL, Brand MD (1990) Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur J Biochem 192: 355–362

    PubMed  CAS  Google Scholar 

  • Bucheler K, Adams V, Brdiczka D (1991) Localization of the ATP/ADP translocator in the inner membrane and regulation of contact sites between mitochondrial envelope membranes by ADP - a study on freeze-fractured isolated liver mitochondria. Biochim Biophys Acta 1056: 233–242

    PubMed  CAS  Google Scholar 

  • Burgess GM, Bird GSJ, Obie JF, Putney JW (1991) The mechanism for synergism between phospholipase-C-linked and adenylylcyclase-linked hormones in liver-cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol poly phosphates. J Biol Chem 266: 4772–4781

    PubMed  CAS  Google Scholar 

  • Buxton D, Barron LL, Olson MS (1982) The effects of α-adrenergic agonists on the regulation of the branched chain α-ketoacid oxidation in the perfused rat liver. J Biol Chem 257: 14318–14323

    PubMed  CAS  Google Scholar 

  • Christensen O (1987) Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330: 66–68

    PubMed  CAS  Google Scholar 

  • Cohen SM (1987) 13C and 31P NMR study of gluconeogenesis: utilization of 13C-labeled substrates by perfused liver from streptozotocin-diabetic and untreated rats. Biochemistry 26: 563–572

    PubMed  CAS  Google Scholar 

  • Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111: 103–111

    PubMed  CAS  Google Scholar 

  • Crompton M (1990) The role of Ca2+ in the function and dysfunction of heart mitochondria. In: Langer GA (ed) Calcium and the heart. Raven Press, New York, pp 167–198

    Google Scholar 

  • Curtain CC, Looney FD, Regan DL, Ivancic NM (1983) Changes in the ordering of lipids in the membrane of Dunaliella in response to osmotic-pressure changes. An e.s.r. study. Biochem J 213: 131–136

    PubMed  CAS  Google Scholar 

  • Davidson AM, Halestrap AP (1987) Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content. Biochem J 246: 715–723

    PubMed  CAS  Google Scholar 

  • Davidson AP, Halestrap AP (1988) Pyrophosphate in the hepatocyte is located primarily in the mitochondria and is elevated by gluconeogenic hormones and A23187. Biochem J 254: 379–384

    PubMed  CAS  Google Scholar 

  • Davidson AM, Halestrap AP (1989) Inhibition of mitochondrial matrix inorganic pyrophosphatase by physiological [Ca2+]i and its role in the hormonal regulation of mitochondrial matrix volume. Biochem J 258: 817–821

    PubMed  CAS  Google Scholar 

  • Davidson AM, Halestrap AP (1990) Partial inhibition by cyclosporin A of the swelling of liver mitochondria in vivo and in vitro induced by sub-micromolar [Ca2+] but not by butyrate. Evidence for two distinct swelling mechanisms. Biochem J 268: 147–152

    PubMed  CAS  Google Scholar 

  • Dierks T, Salentin A, Heberger C, Kramer R (1990a) The mitochondrial aspartate/ glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagents. Biochim Biophys Acta 1028: 268–280

    PubMed  CAS  Google Scholar 

  • Dierks T, Salentin A, Kramer R (1990b) Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents – evidence for a preformed channel as a structural requirement of carrier-mediated transport. Biochim Biophys Acta 1028: 281–288

    PubMed  CAS  Google Scholar 

  • Diwan J (1987) Mitochondrial transport of K+ and Mg2+. Biochim Biophys Acta 895: 155–165

    PubMed  CAS  Google Scholar 

  • Garlid KD (1980) On the mechanism of regulation of the mitochondrial K+/H+ exchanger. J Biol Chem 255: 11273–11279

    PubMed  CAS  Google Scholar 

  • Garlid KD (1988) Mitochondrial volume control. In: Lemasters JJ, Hackenbrock CR, Thurman G, Westerhoff HV (eds) Integration of mitochondrial function. Plenum, New York, pp 257–276

    Google Scholar 

  • Garlid KD, Beavis AD (1985) Swelling and contraction of the mitochondrial matrix. II. Quantitatve application of the light scattering technique to solute transport across the inner membrane. J Biol Chem 25: 13434–13441

    Google Scholar 

  • Griffiths EJ, Halestrap AP (1991) Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Implications for the immunosuppressive and toxic effects of cyclosporin. Biochem J 274: 611–614

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Halestrap AP (1993) Pyrophosphate metabolism is the perfused heart and isolated heart mitochondria and its role in regulation of mitochondrial function by calcium. Biochem J (in press)

    Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–C786

    PubMed  CAS  Google Scholar 

  • Hackenbrock CR, Rehn TG, Weinbach EC, Lemasters JJ (1971) Oxidative phosphorylation and ultrastructural transformations in mitochondria in the intact ascites tumour cell. J Cell Biol 51: 123–157

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1982) The nature of the stimulation of the respiratory chain of rat liver mitochondria by glucagon pretreatment of animals. Biochem J 204: 37–47

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1987a) The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in matrix volume induced by osmotic strength, valinomycin and Ca2+. Biochem J 244: 159–164

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1987b) Glucagon treatment of rats activates the respiratory chain of liver mitochondria at more than one site. Biochim Biophys Acta 927: 280–290

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1989) The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro, and its role in the control of mitochondrial metabolism. Biochim Biophys Acta 973: 355–382

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1991) Calcium dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited by pHs below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 278: 715–719

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Armston AE (1984) Re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism. Biochem J 223: 677–685

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Davidson AM (1989) The role of the adenine nucleotide transporter in the regulation ofintramitochondrial volume. In: Azzi A, Fonyo A, Nalecz MJ, Vignais PV, Wojtcak L (eds) Anion carriers of mitochondrial membranes. Springer, Berlin Heidelberg New York, pp 337–348

    Google Scholar 

  • Halestrap AP, Davidson AM (1990) Inhibition of Ca2+-induced large amplitude swelling of liver and heart mitochondria by cyclosporin A is probably caused by the inhibitor binding to mitochondrial matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268: 153–160

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Dunlop JL (1986) Intramitochondrial regulation of fatty acid (3-oxidation occurs between flavoprotein and ubiquinone. A role for changes in matrix volume. Biochem J 239: 559–565

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Owen MR (1991) Hormonal control of respiration in the liver. In: Grunnet N, Quistorff B (eds) Regulation of hepatic function. Metabolic and structural interactions. Munksgaard, Copenhagen, pp 198–207

    Google Scholar 

  • Halestrap AP, Quinlan PT, Armston AE, Whipps DE (1985) Mechanisms involved in hormone signal transduction across the mitochondrial membrane. Biochem Soc Trans 13: 659–663

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Quinlan PT, Whipps DE, Armston AE (1986) Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium. Biochem J 236: 779–787

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Davidson AM, Potter WD (1990) Mechanisms involved in the hormonal regulation of mitochondrial function through changes in the matrix volume. Biochim Biophys Acta 1018: 278–281

    CAS  Google Scholar 

  • Hampson RK, Barron LL, Olson MS (1983) Regulation of the glycine cleavage system in isolated rat liver mitochondria. J Biol Chem 258: 2993–2999

    PubMed  CAS  Google Scholar 

  • Haussinger D (1990) Nitrogen metabolism in liver - structural and functional organization and physiological relevance. Biochem J 267: 281–290

    PubMed  CAS  Google Scholar 

  • Herman B, Gores GJ, Nieminen AL, Kawanishi T, Harman A, Lemasters JJ (1990) Calcium and pH in anoxic and toxic injury. Crit Rev Toxicol 21: 127–148

    PubMed  CAS  Google Scholar 

  • Inoue T, Yamada T, Furuya E, Tagawa K (1989) Ca2+-induced accumulation of pyrophosphate in mitochondria during acetate metabolism. Biochem J 262: 965–970

    PubMed  CAS  Google Scholar 

  • Issartel J-P, Favre-Bulle O, Lunardi J, Vignais PV (1987) Is pyrophosphate an analogue of adenosine diphosphate for beef heart mitochondrial Fl-ATPase. J Biol Chem 262: 13538–13544

    PubMed  CAS  Google Scholar 

  • Jois M, Hall B, Brosnan JT (1990) Stimulation of glycine catabolism in isolated perfused rat liver by calcium mobilizing hormones and in isolated rat liver mitochondria by submicromolar concentrations of calcium. J Biol Chem 265: 1246–1248

    PubMed  CAS  Google Scholar 

  • Jung DW, Brierley GP (1986) Matrix magnesium and the permeability of heart mitochondria to potassium ions. J Biol Chem 261: 6408–6415

    PubMed  CAS  Google Scholar 

  • Jung DW, Apel L, Brierley GP (1990) Matrix free Mg-2+ changes with metabolic state in isolated heart mitochondria. Biochemistry 29: 4121–4128

    PubMed  CAS  Google Scholar 

  • Kakar SS, Mahdi F, Li X, Garlid KD (1989) Reconstitution of the mitochondrial non-selective Na+/H+:K+/H+ antiporter into proteoliposomes. J Biol Chem 264: 5846–5851

    PubMed  CAS  Google Scholar 

  • Kawanishi T, Blank LM, Harootunian AT, Smith MT, Tsien RY (1989) Ca2+ oscillations induced by hormonal stimulation of individual Fura-2-loaded hepatocytes. J Biol Chem 264: 12859–12866

    PubMed  CAS  Google Scholar 

  • Krämer R (1985) Characterisation of pyrophosphate exchange by the reconstituted adenine nucleotide translocator from mitochondria. Biochem Biophys Res Commun 127: 129–135

    PubMed  Google Scholar 

  • Laoue KF, Schoolwerth AC (1984) Metabolite transport in mammalian mitochondria. In: Ernster L (ed) New comprehensive biochemistry, vol 9. Elsevier, Amsterdam, pp 221–268

    Google Scholar 

  • Leslie BA, Putney JW (1983) Ionic mechanisms in secretogogue-induced morphological changes in rat parotid gland. J Cell Biol 97: 1119–1130

    PubMed  CAS  Google Scholar 

  • Li XQ, Hegazy MG, Mahdi F, Jezek P, Lane RD, Garlid KD (1990) Purification of a reconstitutively active K+/H+ antiporter from rat liver mitochondria. J Biol Chem 265: 15316–15322

    PubMed  CAS  Google Scholar 

  • Lund P, Wiggins D (1987) The matrix water space of mitochondria in situ in isolated hepatocytes. Biosci Rep 7: 59–66

    PubMed  CAS  Google Scholar 

  • Lundquist FT, Tygstrup N, Winkler K, Mellemgaard K, Munck-Petersen S (1962) Ethanol metabolism and the production of free acetate in the human liver. J Clin Invest 41: 955–961

    PubMed  CAS  Google Scholar 

  • Mansurova SE (1989) Inorganic pyrophosphate in mitochondrial metabolism. Biochim Biophys Acta 977: 237–247

    PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1989) The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart. Mol Cell Biochem 89: 121–125

    PubMed  CAS  Google Scholar 

  • McCormack JG, Halestrap AP, Denton RM (1990) The role of calcium ions in the regulation of mammalian intramitochondrial metabolism. Physiol Rev 70: 391–425

    PubMed  CAS  Google Scholar 

  • McGarry JD, Foster DW (1983) Glucagon and ketogenesis. Glucagon I. Handb Exp Pharmacol 66: 383–398

    CAS  Google Scholar 

  • McGivan JD (1988) Liver glutamine metabolism: regulation and physiological significance. In: Kvamme E (ed) Glutamine and glutamate metabolism in mammals, vol 1. CRC Press, Boca Raton, pp 183–202

    Google Scholar 

  • McMurchie EJ, Gibson RA, Abeywardena MY, Charnock JS (1983) Dietary lipid modulation of rat liver mitochondrial succinate, cytochrome c reductase. Biochim Biophys Acta 727: 163–169

    PubMed  CAS  Google Scholar 

  • Meijer AJ, Hensgens HESJ (1982) Ureogenesis. In: Sies H (ed) Metabolic compartmentation. Academic Press, New York, pp 259–286

    Google Scholar 

  • Milner RE, Trayhurn P (1988) Evidence that the acute unmasking of GDP-binding sites in brown adipose tissue mitochondria is not dependent on mitochondrial swelling. Biochem Cell Biol 66: 1226–1230

    PubMed  CAS  Google Scholar 

  • Munn EA (1974) The structure of mitochondria. Academic Press, London

    Google Scholar 

  • Narabayashi H, Takeshige K, Minakami S (1982) Alteration of inner-membrane components and damage to electron-transfer activities of bovine heart submitochondrial particles induced by NADPH-dependent lipid peroxidation. Biochem J202: 97–103

    Google Scholar 

  • Nedergaard J, Cannon B (1987) Apparent unmasking of [3H]-GDP binding and thermogenin antigen in rat brown fat is due to mitochondrial swelling. Eur J Biochem 164: 681–686

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Lindberg O (1972) Inhibited respiration and ATPase activity of rat liver mitochondria under conditions of matrix condensation. FEBS Lett 25: 61–64

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64: 1–64

    PubMed  CAS  Google Scholar 

  • Nicolli A, Redetti A, Bernardi P (1991) The K+ conductance of the inner mitochondrial membrane - a study of the inducible uniport for monovalent cations. J Biol Chem 266: 9465–9470

    PubMed  CAS  Google Scholar 

  • Orrenius S, Mcconkey DJ, Bellomo G, Nicotera P (1989) Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci 10: 281–285

    PubMed  CAS  Google Scholar 

  • Patel TB, Olson MS (1986) Regulation of gluconeogenesis from pyruvate and lactate in the isolated perfused rat liver. Biochim Biophys Acta 888: 315–324

    Google Scholar 

  • Pfanner N, Rassow J, Wienhues U, Hergersberg C, Sollner T, Becker K, Neupert W (1990) Contact sites between inner and outer membranes - structure and role in protein translocation into the mitochondria. Biochim Biophys Acta 1018: 239–242

    PubMed  CAS  Google Scholar 

  • Pilkis SJ, El-Maghrabi MR (1988) Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Biochem 57: 755–783

    PubMed  CAS  Google Scholar 

  • Post JA, Leunissen-Bijvelt J, Ruigrok TJC, Verkleij AJ (1985) Ultrastructural changes of sarcolemma and mitochondria in the isolated rabbit heart during ischaemia and reperfusion. Biochim Biophys Acta 845: 119–123

    PubMed  CAS  Google Scholar 

  • Pryor HJ, Smyth JE, Quinlan PT, Halestrap AP (1987) Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Biochem J 247: 449–457

    PubMed  CAS  Google Scholar 

  • Putney JW (1990) Receptor-regulated calcium entry. Pharmacol Ther 48: 427–434

    PubMed  CAS  Google Scholar 

  • Quinlan PT, Halestrap AP (1986) The mechanism of the hormonal activation of respiration in isolated rat heptocytes and its importance in the regulation of gluconeogenesis. Biochem J 236: 789–800

    PubMed  CAS  Google Scholar 

  • Quinlan PT, Thomas AP, Armston AE, Halestrap AP (1983) Measurement of the intramitochondrial volume in hepatocytes without cell disruption and its elevation by hormones and valinomycin. Biochem J 214: 395–404

    PubMed  CAS  Google Scholar 

  • Rutter GA, Osbaldeston NJ, McCormack JG, Denton RM (1990) Measurement of matrix free Mg2+ concentration in rat heart mitochondria by using entrapped fluorescent probes. Biochem J 271: 627–634

    PubMed  CAS  Google Scholar 

  • Ruzicka FJ, Beinhert H (1977) A new iron-sulphur protein of the respiratory chain – a component of the fatty acid β-oxidation pathway. J Biol Chem 252: 8440–8443

    PubMed  CAS  Google Scholar 

  • Sampson HW (1982) Increased mitochondrial size during cholinergic induced exocrine secretion. Cell Biol Int Rep 6: 981

    PubMed  CAS  Google Scholar 

  • Schöfl C, Sanchezbueno A, Brabant G, Cobbold PH, Cuthbertson KSR (1991) Frequency and amplitude enhancement of calcium transients by cyclic AMP in hepatocytes. Biochem J 273: 799–802

    PubMed  Google Scholar 

  • Schulz H (1991) Beta-oxidation of fatty acids. Biochim Biophys Acta 1081 (2): 109–120

    PubMed  CAS  Google Scholar 

  • Scrutton MC, White MD (1974) Pyruvate carboxylase. Inhibition of the mammalian and avian liver enzymes by a-ketoglutarate and L-glutamate. J Biol Chem 249: 5405–5415

    PubMed  CAS  Google Scholar 

  • Seufert CD, Graf M, Janson G, Kuhn A, Soling HD (1974) Formation of free acetate by isolated perfused livers from normal, starved and diabetic rats. Biochem Biophys Res Commun 57: 901–909

    PubMed  CAS  Google Scholar 

  • Sistare FD, Haynes RC (1985) The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action. J Biol Chem 260: 12748–12753

    PubMed  CAS  Google Scholar 

  • Sistare FD, Picking RA, Haynes RC (1985) Sensitivity of the response of cytosolic calcium in quin-2-loaded rat hepatocytes to glucagon, adenine nucleosides and adenine nucleotides. J Biol Chem 260: 12744–12747

    PubMed  CAS  Google Scholar 

  • Staddon JM, Hansford RG (1989) Evidence indicating that the glucagon-induced increase in cytoplasmic free Ca2+ concentration in hepatocytes is mediated by an increase in cyclic AMP concentration. Eur J Biochem 179: 47–52

    PubMed  CAS  Google Scholar 

  • Tandler B, Hoppel CL (1986) Studies on giant mitochondria. Ann NY Acad Sci 488: 127–139

    Google Scholar 

  • Taraschi TF, Thayer WS, Ellingson JS, Rubin E (1986) Effects of ethanol on the structure and function of rat liver mitochondrial and microsomal membranes. Ann NY Acad Sci 488: 127–139

    PubMed  CAS  Google Scholar 

  • Taylor WM, Van De Pol E, Bygrave FL (1986) On the stimulation of respiration, by α-adrenergic agonists in perfused rat liver. Eur J Biochem 155: 319–322

    PubMed  CAS  Google Scholar 

  • Thomas AP, Halestrap AP (1981) The role of mitochondrial pyruvate transport in the stimulation by glucagon and phenylephrine of gluconeogenesis from L-lactate in isolated rat hepatocytes. Biochem J 198: 551–564

    PubMed  CAS  Google Scholar 

  • Tolleshaug H, Seglen PO (1985) Autophagic-lysosomal and mitochondrial sequestration of [14C]-sucrose. Density gradient distribution of sequestered radioactivity. Eur J Biochem 153: 223–229

    PubMed  CAS  Google Scholar 

  • Unguryte A, Smirnova IN, Baykov AA (1989) Kinetic models for the action of cytosolic and mitochondrial inorganic pyrophosphatases of rat liver. Arch Biochem Biophys 273: 292–300

    PubMed  CAS  Google Scholar 

  • Williamson JR, Monck JR (1989) Hormone effects on cellular Ca2+ fluxes. Annu Rev Physiol 51: 107–124

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halestrap, A.P. (1993). The Regulation of Organelle Function Through Changes in Their Volume. In: Lang, F., Häussinger, D. (eds) Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77124-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77124-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77126-2

  • Online ISBN: 978-3-642-77124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics