Skip to main content

Electrolyte Transport Mechanisms in Fish Intestine

  • Chapter
Ion Transport in Vertebrate Colon

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 16))

Abstract

The ability of fish to osmoregulate in freshwater, in seawater and, occasionally, in other salt media, is ensured by the transport activity of several epithelia. Among these tissues, the intestine is also involved in nutrition and the two major functions are largely linked together since the absorption of inorganic ions drives that of small organic solutes and water. In comparison to other organs more complex in morphology, such as gill and kidney, the intestine presents convenient features which make it appropriate for in vitro studies, namely:

  • it is “flat”, except for villi and ridges, and may be easily mounted in Ussing chambers,

  • its cell population is relatively homogeneous,

  • it is possible to isolate viable cells from its mucosa and easy to prepare subcellular fractions, in particular membrane vesicles,

  • it is directly accessible to electrophysiological measurements. Accordingly, the following techniques, some classical, others more recent, have been applied:

  • everted sac of Wilson and Wiseman, which simultaneously permits measurements of ion and water transport,

  • short-circuit current, together with flux measurements, in Ussing chambers,

  • short-term apical uptake (measured over 1 min or less), by the method of Schultz et al. (1967),

  • isolated cells and apical and basolateral membrane vesicles,

  • intracellular recordings by way of microelectrodes (potential-sensitive and ion-selective) and patch-clamp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguenaou H, Hubsch A, Duportail G, Colin DA (1987) Cl-transport through the intestinal brush border of the trout (Salmo gairdneri R.) Ichtyophysiol Acta 11: 111–126

    Google Scholar 

  • Aguenaou H, Boeuf G, Colin DA (1989a) Na“ uptake through the brush border membranes of intestine from fresh water and sea water adapted trout (Salmo gairdneri R.) J Comp Physiol B 159: 275–280

    Google Scholar 

  • Aguenaou H, Husch A, Colin DA (1989b) Is there a Cl--OH- exchange (CI-H+ cotransport) mechanism in the brush border Is there a Cl--OH- exchange (CI-H+ cotransport) mechanism in the brush border membrane of the freshwater trout (Salmo gairdneri)? J Membr Biol 108: 13–20

    CAS  Google Scholar 

  • Albertini-Berhaut J (1987) L’intestin chez les Mugiladae (Poissons; Téléostéens) à différentes étapes de leur croissance. I. Aspects morphologiques et histologiques. J Appl Ichthyol 3: 1–12

    Google Scholar 

  • Ando M (1980) Chloride dependent sodium and water transport in the sea water eel Anguilla japonica intestine. Comp Biochem Physiol 138: 87–91

    CAS  Google Scholar 

  • Ando M (1988) Amino acid metabolism and water transport across the seawater eel intestine. J Exp Biol 138: 93–106

    CAS  Google Scholar 

  • Ando M (1990) Effects of bicarbonate on salt and water transport across the intestine of the seawater eel. J Exp Biol 150: 367–379

    Google Scholar 

  • Ando M, Kobayashi M (1978) Effects of stripping off the outer layers of the eel intestine on salt and water transport. Comp Biochem Physiol 61: 497–503

    Google Scholar 

  • Ando M, Subramanyam MVV (1990) Bicarbonate transport systems in the intestine of the seawater eel. J Exp Biol 150: 381–394

    Google Scholar 

  • Ando M, Utida S (1986) Effects of diuretics on sodium, potassium, chloride and water transport across the seawater eel intestine. Zool Sci 3: 605–612

    CAS  Google Scholar 

  • Ando M, Utida S, Nagahama H (1975) Active transport of chloride in eel intestine with special reference to sea water adaptation. Comp Biochem Physiol 51A: 27–32

    CAS  Google Scholar 

  • Avella M, Blaise O, Berhaut J (1992) Effects of starvation on valine and alanine transport across the intestinal mucosal border in sea bass, Dicentrarchus labrax. J Comp Physiol B 162: 430–435

    CAS  PubMed  Google Scholar 

  • Bakker R, Groot JA (1988) Induction of bumetamide-sensitive Na(K)CI transport and K+ permeability in the apical membrane of intestinal epithelium of Oreochromis mossambicus due to seawater adaptation. Comp Biochem Physiol 90A: 824

    Google Scholar 

  • Bakker R, Groot JA (1989) Further evidence for the regulation of the tight junction ion selectivity by cAMP in goldfish intestinal mucosa. J Membr Biol 111: 25–35

    CAS  Google Scholar 

  • Balment RJ, Carrick S (1985) Endogenous renin-angiotensin system and drinking behavior in flounder. Am J Physiol 248: R157

    CAS  PubMed  Google Scholar 

  • Balment RJ, Hazon N, Perrot MN (1987) Control of corticosteroid secretion and its relation to osmoregulation in lower vertebrates. In: Kirsch R, Lahlou B (eds) Adaptations to salinity and dehydration. Karger, Basel, pp 92–102

    Google Scholar 

  • Bensahla-Talet A, Porthé-Nibelle J, Lahlou B (1974) Le transport de l’eau et du sodium par l’intestin isolé de la truite Salmo irideus au cours de l’adaptation à l’eau de mer. C R Acad Sci 278: 2541–2544

    CAS  Google Scholar 

  • Bogé G, Rigal A, Pèrès G (1982) The use of intestinal brush border membrane vesicles for comparative studies of glucose and 2-amino-isobutyric acid transport by four species of marine teleosts. Comp Biochem Physiol 72A: 85–89

    Google Scholar 

  • Buddington RK, Diamond JM (1987) Pyloric ceca of fish: a “new” absorptive organ. Am J Physiol 252: G65–76

    CAS  PubMed  Google Scholar 

  • Cartier M, Buclon M, Robinson JWL (1979) Preliminary studies on the characteristics of the phenylalanine and ß-methylglucose transport in the tench intestine in vitro. Comp Biochem Physiol 62A: 363–370

    Google Scholar 

  • Charney AN, Pelkonen AM (1990) Effects of pH, amiloride and bumetanide on intestinal sodium and chloride transport in the winter flounder (Pseudopleuronectes americanus). Bull Mt Desert Isl Biol Lab 29: 56

    Google Scholar 

  • Chen TST, Huang KC (1972) Structural specificity in the intestinal transport of hexoses, tyrosine derivatives and electrolytes in freshwater catfish. J Pharm Exp Ther 180: 777–783

    CAS  Google Scholar 

  • Collie N (1985) Intestinal nutrient transport in coho salmon, Oncorhynchus kisutch, and the effects of development starvation and seawater adaptation. J Comp Physiol 156: 163–179

    CAS  Google Scholar 

  • Crane RK, Bogé G, Rigal A (1979) Isolation of the brush border membranes in vesicular form from the intestinal spiral value of the small dogfish (Scyliorhinus canicula). Biophys Biochim Acta 554: 264–267

    CAS  Google Scholar 

  • Curtis RL, Trier JS, Frizell RA, Lindern NM, Madara JL (1984) Flounder intestinal absorptive cells have abundant gap junctions and may be coupled. Am J Physiol 246: C77

    CAS  PubMed  Google Scholar 

  • Diamond JM (1962) The mechanism of solute transport by the gallbladder. J Physiol 161: 474–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diamond JM, Bossert WH (1967) Standing gradient osmotic flow. J Gen Physiol 50: 2061–2083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Costanzo G, Duportail G, Florentz A, Leray C (1983) The brush-border membrane of trout intestine: influence of its lipid composition on ion permeability, enzyme activity and membrane fluidity. Mol Physiol 4: 279–290

    Google Scholar 

  • Dixon JM, Loretz CA (1986) Luminal alkalinization in the intestine of the goby. J Comp Physiol B 156: 803–811

    CAS  PubMed  Google Scholar 

  • Drai P, Albertini-Berhaut J, Lafaurie M, Sudaka P, Giudicelli J (1990) Simultaneous preparation of basolateral and brush border membrane vesicles from sea bass intestinal epithelium. Biophys Biochim Acta 1022: 251–259

    CAS  Google Scholar 

  • Duffey ME, Thompson SM, Frizzell RA, Schultz SG (1979) Intracellular chloride activities and chloride absorption in the intestinal epithelium of the winter flounder Pseudopleuronectes americanus. J Membr Biol 50: 331–342

    CAS  PubMed  Google Scholar 

  • Ellory JC, Lahlou B, Smith MW (1972) Changes in the intestinal transport of sodium induced by exposure of goldfish to a saline environment. J Physiol 222: 497–509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellory JC, Ramos M, Zeuthen T (1978) Cl-accumulation in the plaice intestinal epithelium. J Physiol 287: 12–13

    Google Scholar 

  • Epstein FH, Stoff JS, Silva P (1983) Mechanism and control of hyperosmotic NaCl-rich secretion by the rectal gland of Squalus acanthias. J Exp Biol 106: 25–41

    CAS  PubMed  Google Scholar 

  • Eveloff J, Field M, Kinne R, Murer H (1980) Sodium-cotransport systems in intestine and kidney of the winter flounder. J Comp Physiol B135: 175–182

    CAS  Google Scholar 

  • Farmanfarmaian A, Ross A, Mazal D (1972) In vivo intestinal absorption of sugar in the toad-fish (marine teleost Opsanus tau). Biol Bull 142: 427–445

    CAS  Google Scholar 

  • Ferraris RP, Ahearn GA (1984) Sugar and amino acid transport in fish intestine. Comp Biochem Physiol 77A: 397–413

    Google Scholar 

  • Field M, Karnaky KJ, Smith PL, Bolton J, Kinter WB (1978) Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americanus. I. Functional and structural properties of cellular and paracellular pathways for Na and Cl. J Membr Biol 41: 265–293

    CAS  PubMed  Google Scholar 

  • Field M, Smith PL, Bolton JE (1980) Ion transport across the isolated intestinal mucosa of the winter flounder Pseudopleuronectes americanus. 2. Effects of cyclic AMP. J Membr Biol 55: 153–163

    Google Scholar 

  • Flik G, Schoenmakers TJM, Groot JA, Van Os CH, Bonga SEW (1990) Calcium absorption by fish intestine: the involvement of ATP- and sodium-dependent calcium extrusion mechanisms. J Membr Biol 113: 13–22

    CAS  PubMed  Google Scholar 

  • Frizzell RA, Smith PL, Vosburgh E, Field M (1979) Coupled sodium chloride ion flux across brush border of flounder intestine. J Membr Biol 46: 27–39

    CAS  PubMed  Google Scholar 

  • Gibson JS, Ellory JC (1987) Intestinal salt transport in the stenothermic Antarctic fish Notothemia rossii. J Exp Biol 130: 437–442

    Google Scholar 

  • Gibson JS, Ellory JC, Cossins AR (1985) Temperature acclimation of intestinal Na+ transport in the carp (Cyprinus carpio). J Exp Biol 114: 355–364

    Google Scholar 

  • Gibson JS, Ellory JC, Lahlou B (1987) Salinity acclimation and intestinal salt transport in the flounder: the role of the basolateral cell membrane. J Exp Biol 128: 371–382

    Google Scholar 

  • Gilles-Baillien M, Gilles R (1983) Intestinal transport: fundamental and comparative aspects. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gögelein H, Schlatter E, Greger R (1987) The “small” conductance chloride channel in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Pflügers Arch Eur J Physiol 409: 122–125

    Google Scholar 

  • Greger R, Schlatter E, Wang F, Forrest JN (1984) Mechanism of NaC1 secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). 3. Effects of stimulation of secretion by cyclic AMP. Pflügers Arch Eur J Physiol 402: 376–384

    CAS  Google Scholar 

  • Greger R, Schlatter E, Gögelein H (1985) Cl-channels in the apical cell membrane of the rectal gland “induced” by cAMP. Pflügers Arch Eur J Physiol 403: 446–448

    CAS  Google Scholar 

  • Greger R, Schlatter E, Gögelein H (1987) Chloride channels in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Properties of the “larger” conductance channel. Pflügers Arch Eur J Physiol 409: 114–121

    CAS  Google Scholar 

  • Greger R, Gogelein H, Schlatter E (1988) Stimulation of NaCI secretion in the rectal gland of the dogfish Squalus acanthias. Comp Biochem Physiol 90A: 733–738

    CAS  Google Scholar 

  • Groot JA (1985) Modulation of transepithelial Cl-permeability. In: Gilles R, GillesBaillien M (eds) Transport processes, ions and osmoregulation, Springer, Berlin Heidelberg New York, pp 206–217

    Google Scholar 

  • Groot JA, Bakker R (1987) Cellular and paracellular transport pathways. In: Kirsch R, Lahlou B (eds) Adaptations to salinity and dehydration. Karger, Basel, pp 56–66

    Google Scholar 

  • Groot JA, Albus H, Bakker R, Dekker K (1983a) Changes in sugar transport and in electrophysiological characteristics of the intestinal preparation of temperature-acclimated goldfish (Carassius auratus L.). J Comp Physiol 151: 163–170

    CAS  Google Scholar 

  • Groot JA, Albus H, Bakker T, Segenbeek Van Heukelom J, Zuidema Th (1983b) Electrical phenomena in fish intestine. In: Gilles-Baillien M, Gilles R (eds) Intestinal transport. Springer, Berlin Heidelberg New York, pp 321–340

    Google Scholar 

  • Halm D, Krasny EJ, Frizzell RA (1985a) Electrophysiology of flounder intestinal mucosa. I. Conductance properties of the cellular and paracellular pathways. J Gen Physiol 85: 843–864

    CAS  Google Scholar 

  • Halm D, Krasny EJ, Frizzell RA (1985b) Electrophysiology of flounder intestinal mucosa. II. Relation of the electrical potential profile to coupled NaCI absorption. J Gen Physiol 85: 865–883

    CAS  PubMed  Google Scholar 

  • Hirano T, Mayer-Gostan N (1976) Eel oesophagus as an osmoregulatory organ. Proc Natl Acad Sci USA 73: 1348–1350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano T, Utida S (1968) Effects of ACTH and cortisol on water movement in isolated ntestine of the eel Anguilla japonica. Gen Comp Endocrinol 11: 373–380

    CAS  PubMed  Google Scholar 

  • Howard JW, Ahaern GA (1988) Parallel antiport mechanisms for Na+ and Cl-transport in herbivorous teleost intestine. J Exp Biol 135: 65–76

    CAS  PubMed  Google Scholar 

  • House CR, Green K (1965) Ion and water transport in isolated intestine of the marine teleost, Cottus scorpius. J Exp Biol 42: 177–189

    CAS  PubMed  Google Scholar 

  • Huang KC, Chen TST (1971) Ion transport across intestinal mucosa of winter flounder, Pseudopleuronectes americanus. Am J Physiol 220: 1734–1738

    CAS  PubMed  Google Scholar 

  • Kirsch R, Lahlou B (1987) Adaptations to salinity and dehydration. Karger, Basel

    Google Scholar 

  • Kirsch R, Laurent P (1975) L’oesophage, organe effecteur de l’osmorégulation chez un téléostéen euryhalin, l’Anguille (Anguilla anguilla L.). C R Acad Sci 280: 2013–2015

    CAS  Google Scholar 

  • Kirsch R, Meister MF (1982) Progressive processing of ingested water in the gut of sea water teleosts. J Exp Biol 98: 67–81

    CAS  PubMed  Google Scholar 

  • Lahlou B (1976) Ionic permeability of fish intestinal mucosa in relation to hypophysectomy and salt adaptation. In: Robinson JWL (ed) Intestinal ion transport. MTP, London, pp 318–387

    Google Scholar 

  • Lau KR (1985) The effect of salinity adaptation on intracellular chloride accumulation in the European flounder. Biophys Biochim Acta 818: 105–108

    CAS  Google Scholar 

  • Lee JAC, Cossins AR (1988) Adaptation of intestinal morphology in the temperature-acclimated carp, Gyprinus carpio L. Cell Tissue Res 251: 451–546

    CAS  PubMed  Google Scholar 

  • Lee JAC, Cossins AR (1990) Temperature adaptation of biological membranes: differential homeoviscous responses in brushborder and basolateral membranes of carp intestinal mucosa. Biophys Biochim Acta 1026: 195–203

    CAS  Google Scholar 

  • Lee JAC, James PS, Smith MW, Cossins AR (1991) Amino acid transport in the intestine and mucosa of temperature acclimated carp. J Therm Biol 16: 7–11

    CAS  Google Scholar 

  • Lorenzo A, Balanos A (1989) Efectos de la salinidad sobre el transporte de Na-Cl a través del intestino del pez Blennius parvicornis. Bol Inst Esp Oceanogr 5: 37–42

    Google Scholar 

  • Loretz CA (1983) Ion transport by the intestine of the goby, Gillichthys mirabilis. Comp Biochem Physiol 75A: 205–210

    Google Scholar 

  • Loretz CA (1987) Regulation of goby intestinal ion absorption by the calcium messenger system. J Exp Zool 244: 67–78

    CAS  PubMed  Google Scholar 

  • Loretz CA, Fourtner CR (1988) Functional characterization of a voltage-gated anion channel from teleost intestinal epithelium. J Exp Biol 136: 383–403

    CAS  PubMed  Google Scholar 

  • Loretz CA, Howard ME, Siegel AJ (1985) Ion transport in goby intestine: cellular mechanism of urotensin II stimulation. Am J Physiol 249: G284–293

    CAS  PubMed  Google Scholar 

  • Machen TE, Diamond JM (1969) An estimate of the salt concentration in the lateral intercellular spaces of rabbit gallbladder during maximal fluid transport. J Membr Biol 1: 194

    CAS  PubMed  Google Scholar 

  • Mackay WC, Lahlou B (1980) Relationship between Na+ and Cl-fluxes in the intestine of the European flounder, Platichthys flesus. In: Lahlou B (ed) Epithelial transport in the lower vertebrates. Cambridge University Press, Cambridge, pp 151–162

    Google Scholar 

  • Mackay WC, Lahlou B, Porthé-Nibelle J (1978) AMP cyclique et contrôle des échanges ioniques au niveau de l’intestin de poisson. C R Acad Sci 287: 1239–1242

    CAS  Google Scholar 

  • Maetz J, Skadhauge E (1968) Drinking rate and ionic gill turnover in relation to external salinities in the eel. Nature 217: 371–373

    CAS  PubMed  Google Scholar 

  • Mainoya JR (1982) Water and NaCI absorption by the intestine of the tilapia, Sarotherodon mossambicus, adapted to fresh water or sea water and the possible role of prolactin and cortisol. J Comp Physiol 146B: 1–8

    CAS  Google Scholar 

  • Marver D, Lear S, Marver LT, Silva P, Epstein FH (1986) Cyclic AMP-dependent timulation of Na,K-ATPase in shark rectal gland. J Membr Biol 94: 205–216

    CAS  PubMed  Google Scholar 

  • Musch MW, Orellana S, Kimberg L, Field M, Halm DR, Krasny E Jr, Frizzell R (1982) Na+-K+-Cl--co-transport in the intestine of a marine teleost. Nature 300: 351–353

    CAS  PubMed  Google Scholar 

  • Naftalin RJ, Kleinzeller A (1981) Sugar absorption and secretion by the winter flounder intestine. Am J Physiol 240: G392–400

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Hirano T (1986) Effect of hypophysectomy on absorption of organic phosphate in eel intestine. Comp Biochem Physiol 84A: 595–599

    CAS  Google Scholar 

  • Nonotte L, Nonotte G, Leray C (1986) Morphological changes in the middle intestine of the rainbow trout, Salmo gairdneri, induced by hyperosmotic environment. Cell Tissue Res 243: 609–617

    Google Scholar 

  • O’Grady SM (1989) Cyclic nucleaotide-mediated effects of ANF and VIP on flounder intestinal ion transport. Am J Physiol 256: C142–146

    PubMed  Google Scholar 

  • O’Grady SM, Wolters PJ (1990) Evidence for chloride secretion in the intestine of the winter flounder. Am J Physiol 258 (2): C243–247

    PubMed  Google Scholar 

  • O’Grady SM, Field M, Nash NT, Rao MC (1985) Atrial natriuretic inhibits Na-K-Cl cotransport inteleost intestine. Am J Physiol 249: C531–534

    PubMed  Google Scholar 

  • Pelletier X, Duportal G, Leray C (1987) Dietary modifications of phospholipid composition and biophysical properties of the brush border membrane along the trout intestine. Membr Biochem 7 (1): 55–56

    CAS  PubMed  Google Scholar 

  • Porthé-Nibelle J, Lahlou B (1975) Effects of corticosteroid hormones and inhibitors of steroids on sodium and water transport by goldfish intestine. Comp Biochem Physiol 50A: 801–805

    Google Scholar 

  • Ramos MMP, Ellory JC (1981) Sodium and chloride transport across the isolated anterior intestine of the plaice Pleuronectes-platessa. J Exp Biol 90: 123–142

    CAS  Google Scholar 

  • Rao MC, Field M (1983) Role of calcium and cyclic nucleotides in the regulation of intestinal ion transport. In: Gilles-Baillien M, Gilles R (eds) Intestinal transport. Springer, Berlin Heidelberg New York, pp 227–239

    Google Scholar 

  • Rao MC, Nash NT, Field M (1984) Differing effects of cGMP and cAMP on ion transport across flounder intestine. Am J Physiol 246: C167–171

    CAS  PubMed  Google Scholar 

  • Reshkin SJ, Ahearn GA (1987) Intestinal glucose transport and salinity adaptation in a euryhaline teleost. Am J Physiol 252: R567–578

    CAS  PubMed  Google Scholar 

  • Reshkin SJ, Grover ML, Howerton RD, Grau EG, Ahearn GA (1989) Dietary hormonal modification of growth, intestinal ATPase and glucose transport in tilapia. Am J Physiol 256: G10 - G18

    Google Scholar 

  • Robinson JWL (1976) Intestinal ion transport. MTP, London

    Google Scholar 

  • Schultz SG, Curran PF, Chez RA, Fuisz RE (1967) Alanine and sodium fluxes across mucosal border of rabbit ileum. J Gen Physiol 50: 1241–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1980) The mechanism of cyclic AMP stimulation of secretion in the dogfish rectal gland. J Comp Physiol 140: 209–216

    CAS  Google Scholar 

  • Silva P, Stoff JS, Solomon RJ, Lear S, Kniaz D, Greger R, Epstein FH (1987) Atrial natriuretic peptide stimulates salt secretion by shark rectal by releasing VIP. Am J Physiol 252: F99–103

    CAS  PubMed  Google Scholar 

  • Simonneaux V, Barra JA, Hmbert W, Kirsch R (1987) The role of mucus in ion absorption by the oesophagus of the sea-water eel (Anguilla anguilla L). Electrophysiological, structural and cytochemical investigations. J Comp Physiol B 157: 187–200

    CAS  Google Scholar 

  • Smith H (1930) The absorption and excretion of water and salts by marine fishes. Am J Physiol 93: 480–505

    CAS  Google Scholar 

  • Smith MW (1964) The in vitro absorption of water and solutes from the intestine of goldfish Carassius auratus. J Physiol 175: 38–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith MW (1970) Selective regulation of amino acid transport in the intestine of goldfish (Carassius auratus L). Comp Biochem Physiol 35: 387–401

    CAS  Google Scholar 

  • Smith MW (1983) Membrane transport in fish intestine. Comp Biochem Physiol 75A: 325–335

    CAS  Google Scholar 

  • Smith MW, Ellory JC, Lahlou B (1975) Sodium and chloride transport by the intestine of the European flounder Platichthys flesus adapted to fresh or sea water. Pflügers Arch Eur J Physiol 357: 303–312

    CAS  Google Scholar 

  • Smith MW, Sepulveda FV, Petersen JVF (1983) Cellular aspects of aminoacid transport. In: Gilles-Baillien M, Gilles R (eds) Intestinal transport. Springer, Berlin Heidelberg New York, pp 46–63

    Google Scholar 

  • Smith PL, Welsh MG, Stewart CP, Frizzell RA, Orellana SA, Field M (1981) Chloride absorption by the intestine of the winter flounder: mechanism of inhibition by reduced pH. Bull Mt Desert Isl Biol Lab 20: 96–101

    Google Scholar 

  • Stewart CP, Smith PL, Welsh MJ, Frizzell RA, Musch MW, Field M (1980) Potassium transport by the intestine of the winter flounder, Pseudopleuronectes americanus: evidence for KCl cotransport. Bull Mt Desert Isl Biol Lab 20: 92–96

    Google Scholar 

  • Stoff JS, Rosa R, Hallac R, Silva P, Epstein FH (1979) Hormonal regulation fo active transport in the dogfish rectal gland. Am J Physiol 237: F138–144

    CAS  PubMed  Google Scholar 

  • Storelli C, Vilella S, Cassano G (1986) Na-dependent D-glucose and L-alanine transport in eel intestinal brushborder membrane vesicles. Am J Physiol 251: 463–469

    Google Scholar 

  • Storelli C, Vilella S, Romano MP, Maffia M, Cassano G (1989) Brushborder amino acid transport mechanisms in carnivorous eel intestine. Am J Physiol 257: R506–510

    CAS  PubMed  Google Scholar 

  • Sundell K, Björnsson BT (1988) Kinetics of calcium fluxes across the intestinal mucosa of the marine teleost Gad us morrhua, measured using an in vitro perfusion method. J Exp Biol 140: 171–186

    Google Scholar 

  • Van der Velden JA, Groot JA, Flick G, Polak P, Kolar ZI (1990) Magnesium transport in fish intestine. J Exp Biol 152: 587–592

    Google Scholar 

  • Yamamoto M, Hirano T (1978) Morphological changes in the oesophageal epithelium of the eel, Anguilla japonica, during adaptation to sea water. Cell Tissue Res 192: 25–38

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Ramos M, Ellory JC (1978) Inhibition of active chloride transport by piretanide. Nature 273: 678–680

    CAS  PubMed  Google Scholar 

  • Zuidema T, Van Riel JW, Siegenbeek Van Heukelom J (1985) Cellular and transepithelial responses of goldfish intestinal epithelium to chloride substitutions. J Membr Biol 88: 293–304

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lahlou, B., Avella, M. (1993). Electrolyte Transport Mechanisms in Fish Intestine. In: Clauss, W. (eds) Ion Transport in Vertebrate Colon. Advances in Comparative and Environmental Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77118-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77118-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77120-0

  • Online ISBN: 978-3-642-77118-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics