Advertisement

Noninvasive Testing of Vasomotor Reserve

  • E. B. Ringelstein
Conference paper

Abstract

Critically reduced perfusion pressure in the brain arteries may lead to ischemic damage in certain vulnerable areas (Bogousslavsky and Regli 1986; Leblanc et al. 1987; Ringelstein et al. 1983; Yamaguchi et al. 1979; Zülch 1961). The perfusion pressure of the brain cannot, however, be measured directly in man. Indirect parameters are the regional cerebral blood flow (rCBF) versus regional cerebral blood volume (rCBV) ratio (Gibbs et al. 1984), or the oxygen extraction ratio (Gibbs et al. 1984; Kanno et al. 1988; Levine et al. 1988) documented either by SPECT or by PET imaging. Another approach is to measure the reactivity of the cerebral vasculature to vasodilating stimuli (CO2, acetazolamide). This may be done by measuring an increase in blood flow or blood flow velocity by either rCBF techniques or transcranial Doppler sonography (TCD) (Kanno et al. 1988; Norrving et al. 1982; Ringelstein et al. 1988; Wodarz 1980; see also Dahl et al. and Haberl et al. in this volume).

Keywords

Middle Cerebral Artery Cerebral Perfusion Pressure Blood Flow Velocity Carotid Endarterectomy Ophthalmic Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaslid R (1987) Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke 18:771–775PubMedCrossRefGoogle Scholar
  2. Arnolds BJ, von Reutern GM (1986) Transcranial Doppler sonography. Examination technique and normal reference values. Ultrasound Med Biol 12:115–123PubMedCrossRefGoogle Scholar
  3. Bogousslavsky J, Regli F (1986) Unilateral watershed cerebral infarcts. Neurology 36:373–377PubMedGoogle Scholar
  4. Breslau PJ, Knox R, Fell G, Greene FM, Thiele BL, Strandness BE Jr (1982) Effect of carbon dioxide on flow patterns in normal extracranial arteries. J Surg Res 32:97–103PubMedCrossRefGoogle Scholar
  5. Caplan LR, Sergay S (1976) Positional cerebral ischemia. J Neurol Neurosurg Psychiatry 39:385–391PubMedCrossRefGoogle Scholar
  6. Copetto JR, Wand M, Bear L, Sciarra R (1985) Neovascular glaucoma and carotid artery obstructive disease. Am J Ophthalmol 99:567–570Google Scholar
  7. Gibbs JM, Wise RJS, Leenders KL, Jones T (1984) Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1:310–314PubMedCrossRefGoogle Scholar
  8. Harper AM, Glass HI (1966) Effect of alteration in the arterial carbon dioxide tension on the blood flow to the cerebral cortex at normal and low arterial blood pressure. J Neurol Neurosurg Psychiatry 28:449–452CrossRefGoogle Scholar
  9. Kanno I, Uemura K, Higano S, Murakami M, Ieda H, Miura S, Shishido F, Inugami A, Sayama I (1988) Oxygen extraction fraction at maximally vasodilated tissue in the ischemic brain estimated from the regional C02-responsiveness measured by positron emission tomography. J Cereb Blood Flow Metab 8:227–235PubMedCrossRefGoogle Scholar
  10. Kety SS, Schmidt CF (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest 27:448–492Google Scholar
  11. Keunen RWM, Ackerstaff RGA, Stegeman DF, Schulte, BPM (1989) The impact of internal carotid artery occlusion and of the integrity of the circle of Willis on cerebral vasomotor reactivity - a transcranial Doppler study. In: Meyer JS, et al. (eds) Cerebral vascular disease. Elsevier, Amsterdam, pp 85–88Google Scholar
  12. Kindt GW, Humans JR, Convey LW (1969) The use of ultrasound to determine cerebral arterial reserve. J Neurösurg 31:544–549PubMedCrossRefGoogle Scholar
  13. Kirkham FJ, Padayachee TS, Parsons S, Seargeant LS, House RF, Gosling RG (1986) Transcranial measurement of blood flow velocities in the basal cerebral arteries using pulsed Doppler ultrasound: velocity as an index of flow. Ultrasound Med Biol 12:15–21PubMedCrossRefGoogle Scholar
  14. Leblanc R, Yamamoto YL, Tyler JL, Dikscic M, Hakim A (1987) Borderzone ischemia. Ann Neurol 22:707–713PubMedCrossRefGoogle Scholar
  15. Levine RL, Sunderland JJ, Lagreze HL, Niekies RJ, Rowe BR, Turski PA (1988) Cerebral perfusion reserve indexes determined by fluoromethane positron emission scanning. Stroke 19:19–27PubMedCrossRefGoogle Scholar
  16. Norrving B, Nilsson B, Risberg J (1982) rCBF in patients with carotid occlusion - resting and hypercapnic flow related to collateral pattern. Stroke 13:155–162PubMedCrossRefGoogle Scholar
  17. Ringelstein EB, Zeumer H, Angelou D (1983) The pathogenesis of strokes from internal carotid artery occlusion. Diagnostic and therapeutic implications. Stroke 14:867–875PubMedCrossRefGoogle Scholar
  18. Ringelstein EB, Sievers C, Ecker S, Schneider PA, Otis SM (1988) Non-invasive assessment of C02-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 19:936–969CrossRefGoogle Scholar
  19. Ringelstein EB (1989) A practical guide to transcranial Doppler sonography. In: Weinberger J (ed) Non-invasive assessment of the cerebral circulation in cerebrovascular disease. Frontiers of clinical neuroscience theories. Liss, New York, pp 75–121Google Scholar
  20. Ringelstein EB, Koschorke S, Holling A, Thron A, Lambertz H, Minale C (1989) Computerized tomography patterns of proven embolic brain infarctions. Ann Neurol 26:759–765PubMedCrossRefGoogle Scholar
  21. Ringelstein EB, Kahlscheuer B, Niggemeyer E, Otis SM (1990) Transcranial Doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol 16:745–761PubMedCrossRefGoogle Scholar
  22. Ringelstein EB, van Eyck S, Mertens I (1991a) Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison of C02 with acetazolamide. J Cereb Blood Flow Metab (in press)Google Scholar
  23. Ringelstein EB, Weiller C, Weckesser M, Weckesser S (1991b) Cerebral vasomotor reactivity is significantly reduced in low-flow as compared to thromboembolic infarctions: the key role of the circle of Willis. J Neurol Sci (in press)Google Scholar
  24. Ringelstein EB (1991) Physiologic testing of vasomotor reserve. In: Newell DW, Aaslid R (eds) Transcranial Doppler sonograpy. Clinical aspects. Raven, New York (in press)Google Scholar
  25. Valk J (1980) Computed tomography and cerebral infarctions. Raven, New YorkGoogle Scholar
  26. Weiller C, Ringelstein EB, Reiche W, Büll U (1991) Clinical and hemodynamical aspects of low-flow infarcts. Stroke 22:1117–1123PubMedCrossRefGoogle Scholar
  27. Widder B, Paulat K, Hackspacher J, Mayr E (1986) Transcranial Doppler C02-test for the detection of hemodynamically critical carotid artery stenosis and occlusions. Eur Arch Psychiatry Neurol Sci 236:162–168PubMedCrossRefGoogle Scholar
  28. Wodarz R (1980) Watershed infarctions and computed tomography: topographic study in cases with stenosis or occlusion of the carotid artery. Neuroradiology 19:245–248PubMedGoogle Scholar
  29. Yamaguchi F, Meyer JS, Sakai F, Yamamoto M (1979) Normal human aging and cerebral vasoconstrictive responses to hypocapnia. J Neurol Sci 44:87–94PubMedCrossRefGoogle Scholar
  30. Yonas H, Gurr D, Latchav RE, Wolfson SD Jr (1987) Xenon computed tomographic blood flow mapping. In: Wood JH (ed) Cerebral blood flow. Physiologic and clinical aspects. McGraw- Hill, New York, pp 220–245Google Scholar
  31. Young LH, Appen RE (1981) Ischemic oculopathy: a manifestation of carotid artery disease. Arch Neurol 38:358–361PubMedGoogle Scholar
  32. Zülch KJ (1961) Die Pathogenese von Massenblutungen und Erweichungen unter besonderer Berücksichtigung klinischer Gesichtspunkte. Acta Neurochir [Suppl] (Wien) 7:51–117Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1992

Authors and Affiliations

  • E. B. Ringelstein

There are no affiliations available

Personalised recommendations