Skip to main content

Particulate Markers for Immunoelectron Microscopy

  • Chapter
Book cover Fine Structure Immunocytochemistry

Abstract

A wide range of particulate markers have been used successfully in immunoelectron microscopy on sections. In practice however two types of markers have been most widely used, namely colloidal gold and ferritin. These will be discussed at length and brief mention made of imposil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ash SG (1978) Polymer adsorption at the solid/liquid interface. Colloid Sci 1:103–112

    Google Scholar 

  • Avrameas S (1969). Coupling of enzymes to protein with glutaraldehyde. Use of the conjugates f1or the detection of antigens and antibodies. Immunochemistry 6:43–52

    PubMed  CAS  Google Scholar 

  • Bain CD, Whitesides GM (1988) Molecular-level control over surface order in self-assembled monolayer films of thiols on gold. Science 240:62–63

    PubMed  CAS  Google Scholar 

  • Baschong W, Roth J (1985) Lyophilization of protein-gold complexes. Histochemical J 17:1147–1153

    CAS  Google Scholar 

  • Baschong W, Wrigley NG (1989) Small colloidal gold conjugated to Fab fragments or to immunoglobulin G as high resolution labels for electron microscopy. A technical overview. J Electron Microsc Tech 14:313–323

    Google Scholar 

  • Baschong W, Lucocq JM, Roth J (1985) “Thiocyanate gold”: small (2–3nm) colloidal gold for affinity cytochemical labeling in electron microscopy. Histochemistry 83:409–411

    PubMed  CAS  Google Scholar 

  • Bastholm L, Scopsi L, Nielsen MH (1986) Silver-enhanced immunogold staining of semithin and ultra-thin cryosections. J Electron Microsc Tech 4:175–176

    Google Scholar 

  • Beesley JE (1989) Colloidal gold: a new perspective for cytochemical marking. Royal Mireroscopical Society. Oxford University Press, Oxford

    Google Scholar 

  • Bendayan M (1985) The enzyme-gold technique: a new cytochemical approach for the ultrastructural localization of macromolecules. In: Bullock GR, Petrusz P (eds) Techniques in Immunocytochemistry, vol 3. Academic Press, London, pp 180–201

    Google Scholar 

  • Bienz K, Egger D, Pasamontes L (1986) Electron microscopic immunocytochemistry: silver enhancement of colloidal gold marker allows double labeling with the same primary antibody. J Histochem Cytochem 34:1337–1342

    PubMed  CAS  Google Scholar 

  • Bonnard C, Papermaster DS, Kraehenbuhl J-P (1984) The streptavidin-biotin bridge technique. Application in light and electron microscope immunocytochemistry. In: Polak JM, Varndell IM (eds) Immunolabelling for electron microscopy. Elsevier, Amsterdam, pp 95–111

    Google Scholar 

  • Brandli AW, Parton RG, Simons K(1990) Transcytosis in MDCK cells: identification of glycoproteins transported bidirectionally between both plasma membrane domains. J Cell Biol 111:2909–2921

    PubMed  CAS  Google Scholar 

  • Brash JL, Lyman DJ (1969) Adsorption of plasma proteins in solution to uncharged, hydrophobic polymer surfaces. J Biomed Mater Res 3:175–189

    PubMed  CAS  Google Scholar 

  • Chaiet L, Wolf FJ (1964) The properties of steptavidin, a biotin binding protein produced by Streptomycetes. Arch Biochem Biophys 106:1–5

    PubMed  CAS  Google Scholar 

  • Chu B, Xu R, DiNapoli A (1987) Light scattering studies of a colloidal suspension of iron oxide particles. J Colloid Interface Sci 116:182–195

    CAS  Google Scholar 

  • Clerc M-F, Granato DA, Horisberger M (1988) Labelling of colloidal gold with IgE. A quantitative study using monoclonal IgE anti-beta-lactoglobulin and evaluation of the biological activity of the gold complex with RBL-1 cells. Histochemistry 89:343–349

    PubMed  CAS  Google Scholar 

  • Cox JS, Kennedy GR, King J, Marshall PR, Rutherford D (1972) Structure of an iron-dextran coplex. J Pharm Pharmacol 24:513–517

    PubMed  CAS  Google Scholar 

  • Danscher G (1981) Localization of gold in biological tissue. A photochemical method for light and electron microscopy. Histochemistry 71:81–88

    PubMed  CAS  Google Scholar 

  • De Brabander M, Geuens G, Meydens R, Moeremans M, De Mey J (1985) Probing microtubule dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios 43:273–283

    PubMed  Google Scholar 

  • DeBrabander M, Nuydens R, Gueuns G, Moeremans M, De Mey J (1986) The use of submicroscopic particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motil Cytoskel 6:105–113

    CAS  Google Scholar 

  • De Brabander M, Nuydens R, Geerts H, Hopkins CR (1988) Dynamic behaviour of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil Cytoskel 9:30–47

    Google Scholar 

  • de Brouckère L, Casimir J (1948) Influence des electrolytes sur la stabilité des hydrosols d’or. Bull Soc Chim Belg 57:547–554

    Google Scholar 

  • De Mey J, Moeremans M, Geuens G, Nuydens R, De Brabander M (1981) High resolution light and electron microscopic localization of tubulin with the IGS (immunogold method). Cell Biol Int Rep 5:889–899

    PubMed  Google Scholar 

  • De Roe C, Courtoy P, Baudhuin P (1987) A model of protein-colloidal gold interactions. J Histochem Cytochem 35:1191–1198

    PubMed  Google Scholar 

  • Dutton A, Tokuyasu KT, Singer SJ (1979) Iron-dextran antibody conjugates. General method for simultaneous stained of two components high resolution immunoelectron microscopy. Proc Natl Acad Sci USA 76:3392–3396

    PubMed  CAS  Google Scholar 

  • Eirich FR (1977) The conformational states of macromolecules adsorbed at solid-liquid interfaces. J Colloid Interface Sci 58:423–435

    CAS  Google Scholar 

  • Faraday M (1857) Experimental relations of gold (and other metals) to light. Philos Trans R Soc 147:145–181

    Google Scholar 

  • Farrant JI (1954) An electron microscopic study of ferritin. Biochem Biophys Acta 12:564–570

    Google Scholar 

  • Faulk WP, Taylor GM (1971) An immunocolloid method for the electron microscope. Immunochemistry 8:1081–1083

    PubMed  CAS  Google Scholar 

  • Finn FM, Titus G, Hoffman K (1980) Hormone receptor studies with avidin and biotinyl-insulin-avidin complexes. J Biol Chem 255:5742–5746

    PubMed  CAS  Google Scholar 

  • Frens G (1972) Particle size and sol stability in metal colloids. Kolloid-Z. u. Z. Polymere 250:736–741

    CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22

    CAS  Google Scholar 

  • Geiger B, Dutton AH, Tokuyasu KT, Singer SJ (1981) Immunoelectronmicroscope studies of membrane microfialment interactions: distribution of apha actinin, tropomysoin and binculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 91:614–628

    PubMed  CAS  Google Scholar 

  • Geoghegan WD (1988) The effect of three variables on adsorption of rabbit IgG to colloidal gold. J Histochem Cytochem 36:401–407

    PubMed  CAS  Google Scholar 

  • Geoghegan W, Ackerman GA (1977) Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem 25:1187–1200

    PubMed  CAS  Google Scholar 

  • Geuze HJ, Slot JW (1980) Disproportionate immunostaining patterns of two secretory protein in guinea pig and rat exocrine pancreas cells. An immunoferritin and fluorescence study. Eur J Cell Biol 21:91–100

    Google Scholar 

  • Golander C-G, Kiss E(1988) Protein adsorption on functionalized and ESCA-characterized polymer films studied by ellipsometry. J Colloid Interface Sci 121:240–253

    Google Scholar 

  • Goodman SL, Hodges GM, Livingstone DC (1980) A review of the colloidal gold marker system. Scanning Electron Microsc 2:133–146

    Google Scholar 

  • Goodman SL, Hodges GM, Trejdosiewicz LK, Livingston DC (1981) Colloidal gold markers and probes for routine application in microscopy. J Microsc 123:201–213

    PubMed  CAS  Google Scholar 

  • Granick S (1946) Ferritin: its properties and significance for iron metabolism. Chem Rev 38:379–403

    PubMed  CAS  Google Scholar 

  • Green NW (1975) Avidin. Adv Protein Chem 29:85–133

    CAS  Google Scholar 

  • Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S (1988) The mannose phosphate receptor and the biogenesis of lysosomes. Cell 52:329–341

    PubMed  CAS  Google Scholar 

  • Guesdon J-L, Ternynck T, Avrameas S (1979) The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27:1131–1139

    PubMed  CAS  Google Scholar 

  • Hacker GW, Grimelius L, Danscher G, Bernatzky G, Muss W, Adam H, Thurner J (1988) Silver acetate autometallography: an alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol 11:213–221

    CAS  Google Scholar 

  • Harrison PM (1959) The structures of ferritin and apoferritin: some preliminary X-ray data. J Mol Biol 1:69–80

    CAS  Google Scholar 

  • Hoefsmit ECM, Korn C, Blijleven N, Ploem JS (1986) Light microscopical detection of single 5 and 20 nm gold particles used for immunolabelling of plasma membrane antigens with silver enhancement and reflection contrast. J Microsc 143:161–169

    PubMed  CAS  Google Scholar 

  • Holgate CS, Jackson PS, Cowen PN, Bird CC (1983) Immunogold-silver staining: a new method of immunostaining with enhanced sensitivity. J Histochem Cytochem 31:939–944

    Google Scholar 

  • Horisberger M (1981) Colloidal gold: a cytochemical marker for light and fluorescent microscopy and for transmission and scanning electron microscopy. Scanning Electron Microsc 11:9–31

    Google Scholar 

  • Horisberger M (1983) Colloidal gold as a tool in molecular biology. TIBS 8:395–397

    CAS  Google Scholar 

  • Horisberger M (1984) Lectin cytochemistry. In: Polak JM, Varndell IM (eds) Immunolabeling for electron microscopy, chap 17. Elsevier, Amsterdam, pp 249–258

    Google Scholar 

  • Horisberger M, Clerc M-F (1985) Labelling of colloidal gold with protein A. Histochemistry 82:219–223

    PubMed  CAS  Google Scholar 

  • Horisberger M, Rosset J (1977) Colloidal gold a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem 25:295–305

    PubMed  CAS  Google Scholar 

  • Horisberger M, M Vauthey (1984) Labelling of colloidal gold with protein. Histochemistry 80:13–18

    PubMed  CAS  Google Scholar 

  • Inoue S, Bajer AS, Mole-Bajer J, Debrabander M, De Mey J, Nuydens R, Ellis GW, Horn E, Inoue TD (1985) Microtubules decorated with 5 nm gold visualised by video-enhanced light microscopy. J Cell Biol 101:146a

    Google Scholar 

  • Jonsson U, Lundstrom I, Ronnberg I(1987) Immunoglobulin G and secretory fibronectin adsorption to silica. The influence of conformational chages on the surface. J Colloid Interface Sci 117:127–138

    Google Scholar 

  • Kehle T, Herzog V(1987) Interaction between protein-gold complexes and cell surfaces: a method for precise quantitation. Eur J Cell Biol 45:80–87

    PubMed  CAS  Google Scholar 

  • Kishida Y, Olsen BR, Berg R, Prockop DJ (1975) Two improved methods for preparing ferritin-protein conjugates for electron microscopy. J Cell Biol 64:331–339

    PubMed  CAS  Google Scholar 

  • Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P(1989) Universality in colloid aggregation. Nature 338:360–362

    Google Scholar 

  • Lucocq JM, Baschong W (1986) Preparation of protein colloidal gold complexes in the presence of commonly used buffers. Eur J Cell Biol 42:332–337

    PubMed  CAS  Google Scholar 

  • Lucocq JM, Roth J (1985) Colloidal gold and collidal silver. Metallic markers for light microscopic histochemistry. In: Bullock GR, Petrusz P (eds) Techniques in immunocyto- chemistry, vol 3. Academic Press, London, pp 204–234

    Google Scholar 

  • Makino K, Ohshima H, Kondo T (1987) Interaction of poly(L-lactide) microcapsule surface with plasma proteins: reversal of zeta potential caused by fibrinogen. J Colloid Interface Sci 115:65–72

    CAS  Google Scholar 

  • Morris RE, Saelinger CB (1986) Problems in the production and use of 5 nm avidin-gold colloids. J Microsc 143:171–176

    PubMed  CAS  Google Scholar 

  • Morrissey BW, Han CC (1978) The conformation of gamma-globulin adsorbed on polystyrene latices determined by quasielestic light scattering. J Colloid Interface Sci 65:423–431

    CAS  Google Scholar 

  • Muhlpfordt H (1982) The preparation of colloidal gold particles using tannic acid as a additional reducing agent. Experientia 38:1127–1128

    Google Scholar 

  • Namork E, Heier HE (1989) Silver enhancement of gold probes (5–40 nm): Single and double labeling of antigenic sites on cell surfaces imaged with backscattered electrons. J Electron Microsc Tech 11:102–108

    PubMed  CAS  Google Scholar 

  • Neutra MR, Ciechanover A, Owen LS, Lodish HF (1985) Iritracellular transport of transferrin- and asioloorosomucoid-colloidal gold conjugates to lysosomes after receptor-mediated endocytosis. J Histochem Cytochem 33:1134–1144

    PubMed  CAS  Google Scholar 

  • Nicholson GL, Singer SJ (1971) Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: application to saccharides bound to cell membranes. Proc Natl Acad Sci USA 68:942–945

    Google Scholar 

  • Norde W, Lykema J (1978) The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces. I Adsorption isotherms Effects of charge, ionic strength and temperature. J Colloid Interface Sci 66:257–265

    CAS  Google Scholar 

  • Overbeek JTG (1977) Recent developments in the understanding of colloid stability. J Colloid Interface Sci 58:408–422

    CAS  Google Scholar 

  • Pauli W (1949) Konstitution und Farbe des kolloiden Goldes. Helv Chim Acta 32:795–810

    PubMed  CAS  Google Scholar 

  • Romano EL, Stolinski C, Hughes-Jones NC (1974) An antiglobulin reagent labelled with colloidal gold for use in electron microscopy. Immunochemistry 11:521–522

    PubMed  CAS  Google Scholar 

  • Roth J (1983a) The colloidal gold marker system for light and electron microscopic cytochemistry. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry, vol 2. Academic Press, London, pp 217–284

    Google Scholar 

  • Roth J (1983b) Application of lectin-gold complexes for electron microscopic localization of glycoconjugates on thin sections. J Histochem Cytochem 31:987–999

    PubMed  CAS  Google Scholar 

  • Roth J (1989) Postembedding labeling on Lowicryl K4M sections: detection and modification of cellular components. Methods Cell Biol 31:513–551

    PubMed  CAS  Google Scholar 

  • Sandwick RK, Schray KJ (1987) The inactivation of enzymes upon interaction with a hydrophobic latex surface. J Colloid Interface Sci 115:130–137

    CAS  Google Scholar 

  • Sandwick RK, Schray KJ (1988) Conformational states of enzymes bound to surfaces. J Colloid Interface Sci 121:1–12

    CAS  Google Scholar 

  • Sata T, Lackie PM, Taatjes DJ, Peumans W, Roth J (1989) Detection of Neu 5 Ac (alpha 2,3) Gal (beta 1,4) Glc Nac sequence with Leukoagglutinin from Maackea amurensis: light and electron microscopic demonstration of differential tissue expression of terminal sialic acid in alpha2,3 and alpha2,6 linkage. J Histochem Cytochem 37:1577–1588

    PubMed  CAS  Google Scholar 

  • Scopsi L, Larsson L-I (1985) Increased sensitivity in immunocytochemistry: Effects of double application of antibodies and of silver intensification on immunogold and peroxidase- antiperoxidase staining techniques. Histochemistry 82:321–329

    PubMed  CAS  Google Scholar 

  • Shotton DM (1988) Review: video enhanced light microscopy and its applications in cell biology. J Cell Sci 89:129–150

    PubMed  Google Scholar 

  • Singer SJ, Schick AF (1961) The properties of specific stains for electron microscopy prepared by the conjugation of antibody molecules with ferritin. J Biophys Biochem Cytol 9:519–537

    PubMed  CAS  Google Scholar 

  • Skutelsky E (1987) The use of avidin-gold complex for light microscopic localisation of lectin receptors. Histochemistry 86:291–295

    PubMed  CAS  Google Scholar 

  • Slot JW, Geuze HJ (1981) Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol 90:533–536

    PubMed  CAS  Google Scholar 

  • Slot JW, Geuze HJ (1983) The use of protein A-colloidal gold (PAG) complexes as immunolabels in ultra-thin sections. Im Cuello AC (ed) Immunohistochemistry, IBRO Handbook Series. Wiley, Chichester, England, pp 323–340

    Google Scholar 

  • Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labelling cytochemistry. Eur J Cell Biol 38:87–93

    PubMed  CAS  Google Scholar 

  • Slot JW, Geuze HJ, Weerkamp A J (1988) Localization of macromolecular components by application of the immunogold technique on cryosectioned bacteria. Methods Microbiol 20:211–236

    Google Scholar 

  • Smith RM, Goldberg RI, Jarett L (1988) Preparation and characterization of a colloidal gold- insulin complex with binding and biological activities identical to native insulin. J Histochem Cytochem 36:359–365

    PubMed  CAS  Google Scholar 

  • Smith T (1980) The hydrophilic nature of a clean gold surface. J Colloid Interface Sci 75:51–55

    CAS  Google Scholar 

  • Soderquist ME, Walton AG (1980) Structural changes in proteins adsorbed on polymers surfaces. J Colloid and Interface Sci 75:386–397

    CAS  Google Scholar 

  • Springall DR, Hacker GW, Grimelius L, Polak JM (1984) Investigation of immunogold-silver staining by electron microscopy. Histochemistry 83:545–550

    Google Scholar 

  • Stathis EC, Fabrikanos A (1958) Preparation of colloidal gold. Chem Ind (Lond) 27:860–861

    Google Scholar 

  • Steinberg G (1967) On the configuration of polymers at the solid-liquid interface. J Phys Chem 71: 292–330

    CAS  Google Scholar 

  • Stierhof Y-D, Schwarz H (1991) Suitability of different silver enhancement methods applied to 1 nm colloidal gold particles: an immunoelectron microscopy study. J Electron Microsc Tech 17:336–343

    PubMed  CAS  Google Scholar 

  • Stols ALH, Schalken J J, Stakhouders AM (1980) Quantitation of colloidal gold as a immunolabel with X-ray microanalysis. Electron Microsc 3:80–81

    CAS  Google Scholar 

  • Suzawa TH, Shirahama R, Fujimoto T(1982) J Colloid Interface Sci 86:144

    CAS  Google Scholar 

  • Tokuyasu KT (1980) Visualization of longitudinally orientated inetermediate filaments in frozen sections of chicken cardiac muscle by a new staining method. J Cell Biol 97:562–565

    Google Scholar 

  • Tokuyasu KT, Dutton A, Geiger B, Singer SJ (1981) Ultrastructure of chicken cardiac muscle as studied by double immunolabeling in electron microscopy. Proc Natl Acad Sci USA 78:7619–7623

    PubMed  CAS  Google Scholar 

  • Tokuyasu KT, Dutton AH, Singer SJ (1983) Immunoelectron micrsocopy studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle. J Cell Biol 97:1736–1742

    Google Scholar 

  • Tschopp J (1984) Ultrastructure of the membrane attack complex of complement. J Biol Chem 259:7857–7863

    PubMed  CAS  Google Scholar 

  • Tschopp J, Podack ER, Miiller-Ebernard HJ (1982) Ultrastructure of the membrane attack complex of complement: detection of the tetramolecular C9-polymerizing complex C5b-8. Proc Natl Acad Sci USA 79:7474–7478

    PubMed  CAS  Google Scholar 

  • Van Bergen en Henegouwen, PMP, Leunissen JLM (1986) Controlled growth of gold particles and implications for immunolabelling efficiency. Histochemistry 85:81–87

    Google Scholar 

  • Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. The interaction of sol particles having an electric double layer. Elsevier, New York

    Google Scholar 

  • Wang B-L, Larsson L-I (1985) Simultaneous demonstration of multiple antigens by indirect immunofluorescence or immunogold staining. Novel light and electron microsocpical double and triple staining. Methods employing primary antibodies from the same species. Histochemistry 83:47–56

    PubMed  CAS  Google Scholar 

  • Yokota S (1988) Effect of particle size on labelling density for catalase in protein A-gold immunocytochemistry. J Histochem Cytochem 36:107–109

    PubMed  CAS  Google Scholar 

  • Young BR, Pitt WG, Cooper SL (1988) Protein adsorption on polymeric biomaterials 1.Adsorption isotherms. J Colloid Interface Sci 124:28–43

    CAS  Google Scholar 

  • Zsigmondy R (1901) Die hochrote Goldlosung als Reagens auf Kolloid. Z Anal Chem 40:697–719

    Google Scholar 

  • Zsigmondy R (1905) Zur Erkenntnis der Kolloide. G Fischer, Jena, Germany

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lucocq, J. (1993). Particulate Markers for Immunoelectron Microscopy. In: Fine Structure Immunocytochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77095-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77095-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77097-5

  • Online ISBN: 978-3-642-77095-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics