Skip to main content

Development in Caulobacter crescentus

  • Chapter
Development
  • 223 Accesses

Abstract

Caulobacters are dimorphic bacteria, with a motile phase in which the cell body is flagellated, and a sessile stage, when the cell grows a stalk. Development involves the asymmetric division of the parent stalked cell to yield one flagellated swarmer cell and one stalked cell, followed by differentiation of the swarmer cell into a stalked cell. Some of these events are the subject of this chapter. The study of Caulobacter development is facilitated by the simplicity of its cell cycle, the polar location of the organelles, and the ability to obtain synchronous swarmer cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ely B, Shapiro L (1984) Regulation of cell differentiation in Caulobacter crescentus. In: Losick R, Shapiro L (eds) Microbial development. Cold Spring Harbor, New York, pp 1–26.

    Google Scholar 

  2. Poindexter JS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28:231–295.

    PubMed  CAS  Google Scholar 

  3. Pointdexter JS (1972) The caulobacters: ubiquitous unusual bacteria. Microbiol Rev 45:123–179.

    Google Scholar 

  4. Dow CS, Whittenbury R, Carr NG (1983) The “shut down” or “growth precursor” cell — an adaptation for survival in a potentially hostile environment. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Symposium of the society for general microbiology, vol 34. Microbes in their natural environments. Cambridge University Press, Cambridge, England; New York, NY, USA, pp 187–247.

    Google Scholar 

  5. Ely B, Gerardot CJ, Fleming DL, Gomes SL, Frederikse P, Shapiro L (1986) General nonchemotactic mutants of Caulobacter crescentus. Genetics 114:717–730.

    PubMed  CAS  Google Scholar 

  6. Macnab RM (1987) Motility and chemotaxis. In: Neidhardt FC, Ingraham J, Low KB, Magasanik B, Schaecter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. American Society for Microbiology, Washington DC, pp 732–759.

    Google Scholar 

  7. Shapiro L (1985) Generation of polarity during Caulobacter differentiation. Annu Rev Cell Biol 1:173–207.

    Article  PubMed  CAS  Google Scholar 

  8. Degnen ST, Newton A (1972) Chromosome replication during development in Caulobacter crescentus. J Mol Biol 64:671–680.

    Article  PubMed  CAS  Google Scholar 

  9. Dingwall A, Shapiro L (1990) Chromosome replication rate, origin and bidirectionality as determined by pulsed field gel electrophoresis. Proc Natl Acad Sci USA 86:119–123.

    Article  Google Scholar 

  10. Evinger M. Agabian N (1979) Caulobacter crescentus nucleoid: analysis of sedimentation behavior and protein composition during the cell cycle. Proc Natl Acad Sci USA 76:175–178.

    Article  PubMed  CAS  Google Scholar 

  11. Marczynski G, Dingwall A, Shapiro L (1990) Plasmid and chromosomal replication and partitioning during the Caulobacter crescentus cell cycle. J Mol Biol 212:709–722.

    Article  PubMed  CAS  Google Scholar 

  12. Poindexter JS, Hagenzieker JG (1981) Constriction and septation during cell division in caulobacters. Can J Microbiol 27:704–719.

    Article  PubMed  CAS  Google Scholar 

  13. Bryan R, Glaser D, Shapiro L (1990) A genetic regulatory hierarchy in Caulobacter development. In: Wright TRF (ed) Advances in genetics, vol 27. Academic Press, London, pp 1–31.

    Google Scholar 

  14. Driks A, Bryan R, Shapiro L, DeRosier DJ (1989) The organization of the Caulobacter crescentus flagellar filament. J Mol Biol 206:627–636.

    Article  PubMed  CAS  Google Scholar 

  15. Macnab RM (1987) Flagella. In: Neidhardt FC, Ingraham J, Low KB, Magasanik B, Schaecter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. American Society for Microbiology, Washington, D.C., pp 70–83.

    Google Scholar 

  16. Minnich SA, Ohta N, Taylor N, Newton A (1988) Role of the 25-, 27-and 29-kDa flagellins of Caulobacter crescentus in cell motility; a method for the construction of the Tn5 insertion and deletion mutants by gene replacement. J Bacteriol 170:3953–3960.

    PubMed  CAS  Google Scholar 

  17. Newton A (1989) Differentiation in Caulobacter flagellum development, motility and chemotaxis. In: Chater K, Hopwood DA (eds) Genetics of bacterial diversity. Academic Press, London, pp 199–222.

    Google Scholar 

  18. Stallmeyer MJB, Hahnenberger KM, Sosinsky GE, Shapiro L, DeRosier DJ (1989) Image reconstruction of the flagellar basal body of Caulobacter crescentus. J Mol Biol 205:511–518.

    Article  PubMed  CAS  Google Scholar 

  19. Wagenknecht T, DeRosier D (1981) Three-dimensional reconstruction of the flagellar hook from Caulobacter crescentus. J Mol Biol 151:439–465.

    Article  PubMed  CAS  Google Scholar 

  20. Dingwall A, Gober JW, Shapiro L (1990) Identification of a Caulobacter basal body gene and a cis-acting site required for activation of transcription. J Bacteriol 172:6066-6076.

    PubMed  CAS  Google Scholar 

  21. Ely B, Croft RH, Gerardot CJ (1984) Genetic mapping of genes required for motility in Caulobacter crescentus. Genetics 108:523–532.

    PubMed  CAS  Google Scholar 

  22. Ely B, Ely TW (1989) Use of pulsed field gel electrophoresis and transposition mutagenesis to estimate the minimal number of genes required for motility in Caulobacter crescentus. Genetics 123:649–654.

    PubMed  CAS  Google Scholar 

  23. Hahnenberger K, Shapiro L (1987) Identification of a gene cluster involved in flagellar basal body biogenesis in Caulobacter crescentus. J Mol Biol 194:91–103.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson RC, Ely B (1979) Analysis of non-motile mutants of the dimorphic bacterium Caulobacter crescentus. J Bacteriol 137:627–635.

    PubMed  CAS  Google Scholar 

  25. Johnson RC, Ferber DM, Ely B (1983) Synthesis and assembly of flagellar components by Caulobacter crescentus motility mutants. J Bacteriol 154:1137–1144.

    PubMed  CAS  Google Scholar 

  26. Kaplan JB, Dingwall A, Bryan R, Champer R, Shapiro L (1989) Temporal regulation and overlap organization of two Caulobacter flagellar genes. J Mol Biol 205:71–83.

    Article  PubMed  CAS  Google Scholar 

  27. Frederikse PH, Shapiro L (1989) An Escherichia coli chemoreceptor gene is temporally controlled in Caulobacter. Proc Natl Acad Sci USA 86:4061–4065.

    Article  PubMed  CAS  Google Scholar 

  28. Gober JW, Shapiro L (1990) Integration host factor is required for the activation of developmentally regulated genes in Caulobacter. Genes Dev 4:1494–1499.

    Article  PubMed  CAS  Google Scholar 

  29. Mullin DA, Newton A (1989) Ntr-like promoters and upstream regulatory sequence ftr are required for transcription of a developmentally regulated Caulobacter crescentus flagellar gene. J Bacteriol 171:3218–3227.

    PubMed  CAS  Google Scholar 

  30. Ninfa AJ, Mullin DA, Ramakrishnan G, Newton A (1989) Escherichia coli σ54 RNA polymerase recognizes Caulobacter crescentus fibG and flbN flagellar gene promoters in vitro. J Bacteriol 171:383–391.

    PubMed  CAS  Google Scholar 

  31. Ramakrishnan G, Newton A (1990) FlbD of Caulobacter crescentus is a homologue of the NtrC(NR1) protein and activates σ54-dependent flagellar gene promoters. Proc Natl Acad Sci USA 87:2369–2373.

    Article  PubMed  CAS  Google Scholar 

  32. Champer R, Dingwall A, Shapiro L (1987) Cascade regulation of Caulobacter flagellar and chemotaxis genes. J Mol Biol 194:71–80.

    Article  PubMed  CAS  Google Scholar 

  33. Newton A, Ohta N, Ramakrishnan G, Mullin D, Raymond G (1989) Genetic switching in the flagellar gene hierarchy requires negative as well as positive regulation of transcription. Proc Natl Acad Sci USA 86:6651–6655.

    Article  PubMed  CAS  Google Scholar 

  34. Schoenlein PV, Ely B (1989) Characterization of strains containing mutations in the contiguous flaF,flbT, orflbA-flaG transcription unit and identification of a novel Fla phenotype in Caulobacter crescentus.J Bacteriol 171:1554–1561.

    PubMed  CAS  Google Scholar 

  35. Xu H, Dingwall A, Shapiro L (1989) Negative transcriptional regulation in the Caulobacter flagellar hierarchy. Proc Natl Acad Sci USA 86:6656–6660.

    Article  PubMed  CAS  Google Scholar 

  36. Bryan R, Champer R, Gomes S, Ely B, Shapiro L (1987) Separation of temporal control and trans-acting modulation of flagellin and chemotaxis genes in Caulobacter. Mol Gen Genet206:300–306.

    Article  PubMed  CAS  Google Scholar 

  37. Loewy ZG, Bryan RA, Reuter SH, Shapiro L (1987) Control of synthesis and positioning of a Caulobacter crescentus flagellar protein. Gene Dev 1:626–635.

    Article  PubMed  CAS  Google Scholar 

  38. Minnich SA, Newton A (1987) Promoter mapping and cell cycle regulation of flagellin gene transcription in Caulobacter crescentus. Proc Natl Acad Sci USA 84:1142–1146.

    Article  PubMed  CAS  Google Scholar 

  39. Sheffery M, Newton A (1981) Regulation of periodic protein synthesis in the cell cycle: control of initiation and termination of flagellar gene expression. Cell 24:49–57.

    Article  PubMed  CAS  Google Scholar 

  40. Millhausen M, Agabian N (1983) Caulobacter flagellin mRNA segregated asymmetrically at cell division. Nature 302:630–632.

    Article  Google Scholar 

  41. Gomes SL, Shapiro L (1984) Differential expression and positioning of chemotaxis methylation proteins in Caulobacter. J Mol Biol 177:551–568.

    Article  Google Scholar 

  42. Nathan P, Gomes SL, Hahnenberger K, Newton A, Shapiro L (1986) Differential localization of membrane receptor chemotaxis proteins in the Caulobacter predivisional cell. J Mol Biol191:433–440.

    Article  PubMed  CAS  Google Scholar 

  43. Smit J, Agabian N (1982) Caulobacter crescentus pili: analysis of production during development. Dev Biol 89:237–247.

    Article  PubMed  CAS  Google Scholar 

  44. Reuter S, Shapiro L (1987) Asymmetric segregation of heatshock proteins upon cell division in Caulobacter crescentus. J Mol Biol 194:653–662.

    Article  PubMed  CAS  Google Scholar 

  45. Driks A, Schoenlein PV, DeRosier DJ, Shapiro L, Ely B (1990) A Caulobacter gene involved in polar morphogenesis. J Bacteriol 172:2113–2123.

    PubMed  CAS  Google Scholar 

  46. Newton A, Ohta N, Huguenel E, Chen LS (1985) Approaches to the study of cell differentiation in Caulobacter crescentus. In: Setlow P, Hock J (eds) The molecular biology of microbial differentiation. American Society for Microbiology, Washington DC, pp 267–276.

    Google Scholar 

  47. O’Connell M, Henry S, Shapiro L (1986) Fatty acid degradation in Caulobacter crescentus. J Bacteriol 168:49–54.

    PubMed  Google Scholar 

  48. Poindexter JS (1987) Bacterial responses to nutrient limitation. In: Fletcher M, Gray TRG, Jones JG (eds) Symposium of the society for general microbiology, vol 41. Ecology of microbial communities. Cambridge University Press, Cambridge, pp 283–317.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bryan, R. (1992). Development in Caulobacter crescentus . In: Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77043-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77043-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77045-6

  • Online ISBN: 978-3-642-77043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics