Skip to main content
Book cover

Development pp 343–354Cite as

Genetic Mechanisms in Early Neurogenesis of Drosophila melanogaster

  • Chapter

Abstract

Insect neurons are generated by the proliferation of progenitor cells called neuroblasts. In Drosophila melanogaster, the neuroblasts develop from a special region of the ectoderm, the neurogenic region (NR), or neuroectoderm; in this region neighboring cells have to decide between one of two alternative fates and develop either as neuroblasts or as epidermoblasts (progenitor cells of the epidermis). Due to its apparent simplicity, the decision of neuroectodermal cells for the neural or the epidermal fate is a good example to investigate the mechanisms of origin of cell diversity in a multicellular organism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campos-Ortega JA (1988) Cellular interactions during early neurogenesis of Drosophila melanogaster. Trends Neurosci 11:400–405.

    Article  PubMed  CAS  Google Scholar 

  2. Doe CQ, Hiromi Y, Gehring WJ, Goodman CS (1988) Expression and function of the segmentation gene fushitarazu during Drosophila neurogenesis. Science 239:170–175.

    Article  PubMed  CAS  Google Scholar 

  3. Jiménez F (1988) Genetic control of neuronal determination in insects. Trends Neurosci 11:378–380.

    Article  PubMed  Google Scholar 

  4. Ghysen A, Dambly-Chaudière C (1988) From DNA to form: the achaete-scute complex. Genes Dev 2:495–501.

    Article  PubMed  CAS  Google Scholar 

  5. Campos-Ortega JA, Knust E (1990) Molecular analysis of a cellular decision during embryonic development of Drosophila melanogaster. epidermogenesis or neurogenesis. Eur J Biochem 190:1–10.

    PubMed  CAS  Google Scholar 

  6. Klämbt C, Knust E, Tietze K, Campos-Ortega JA (1989) Closely related transcripts encoded by the neurogenic gene complex Enhancer of split of Drosophila melanogaster. EMBO J 8:203–210.

    PubMed  Google Scholar 

  7. Jan YN, Jan LY (1990) Genes required for specifying cell fates in Drosophila embryonic sensory nervous system. Trends Neurosci 13:493–498.

    Article  PubMed  CAS  Google Scholar 

  8. Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York Tokyo, viii + 227 pp.

    Google Scholar 

  9. Thomas JB, Bastiani MJ, Bate M, Goodman C (1984) From grasshopper to Drosophila: a common plan for neuronal development. Nature 310:203–207.

    Article  PubMed  CAS  Google Scholar 

  10. Technau GM, Campos-Ortega JA (1987) Cell autonomy of expression of neurogenic genes of Drosophila melanogaster. Proc Natl Acad Sci USA 84:4500–4504.

    Article  PubMed  CAS  Google Scholar 

  11. Becker T, Technau GM (1990) Single cell transplantation reveals interspecific cell communication in Drosophila chimeras. Development 109:821–832.

    PubMed  CAS  Google Scholar 

  12. Doe CQ, Goodman CS (1985) Early events in insect neurogenesis. II. The role of cell interactions and cell lineages in the determination of neuronal precursor cells. Dev Biol 111:206–219.

    Article  PubMed  CAS  Google Scholar 

  13. Taghert PH, Doe CQ, Goodman CS (1984) Cell determination and regulation during development of neuroblasts and neurones in grasshopper embryos. Nature 307:163–165.

    Article  PubMed  CAS  Google Scholar 

  14. Jiménez F, Campos-Ortega JA (1990) Defective neuroblast commitment in mutants of the achaete-scute complex and adjacent genes of Drosophila melanogaster. Neuron 5:81–89.

    Article  PubMed  Google Scholar 

  15. Lehmann R, Jimenez F, Dietrich U, Campos-Ortega JA (1983) On the phenotype and development of mutants of early neurogenesis in Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 192:62–74.

    Article  Google Scholar 

  16. Poulson DF (1937) Chromosomal deficiencies and embryonic development of Drosophila melanogaster. Proc Natl Acad Sci USA 23:133–137.

    Article  PubMed  CAS  Google Scholar 

  17. Brand M, Campos-Ortega JA (1988) Two groups of interrelated genes regulate early neurogenesis in Drosophila melanogaster, Wilhelm Roux’s Arch Dev Biol 197:457–470.

    Article  Google Scholar 

  18. de 1a Concha A, Dietrich U, Weigel D, Campos-Ortega JA (1988) Functional interactions of neurogenic genes of Drosophila melanogaster. Genetics 118:499–508.

    Google Scholar 

  19. Campos-Ortega JA, Knust E (1990) Defective ommatidial cell assembly leads to defective morphogenesis: a phenotypic analysis of the E(spl)D mutation of Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 198:275–285.

    Google Scholar 

  20. Hoppe PE, Greenspan RJ (1990) The Notch locus of Drosophila is required in epidermal cells for epidermal development. Development 109:875–885.

    PubMed  CAS  Google Scholar 

  21. Simpson P (1990) Notch and the choice of cell fate in Drosophila neuroepithelium. Trends Genet 6:343–345.

    Article  PubMed  CAS  Google Scholar 

  22. Artavanis-Tsakonas S (1988) The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genet 4:95–100.

    Article  PubMed  CAS  Google Scholar 

  23. Haenlin M, Kramatschek B, Campos-Ortega JA (1990) The pattern of transcription of the neurogenic gene Delta of Drosophila melanogaster. Development 110:905–914.

    PubMed  CAS  Google Scholar 

  24. Johansen KM, Fehon RG, Artavanis-Tsakonas S (1989) The Notch gene product is a glycoprotein expressed on the cell surface of both epidermal and neuronal precursor cells during Drosophila development. J Cell Biol 109:2427–2440.

    Article  PubMed  CAS  Google Scholar 

  25. Kidd S, Baylies MK, Gasic GP, Young MW (1989) Structure and distribution of the Notch protein in developing Drosophila. Genes Dev 3:1113–1129.

    Article  PubMed  CAS  Google Scholar 

  26. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581.

    Article  PubMed  CAS  Google Scholar 

  27. Vässin H, Bremer KA, Knust E, Campos-Ortega JA (1987) The neurogenic locus Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats. EMBO J 6:3431–3440.

    PubMed  Google Scholar 

  28. Cagan RL, Ready DF (1989) Notch is required for successive cell decisions in the developing Drosophila eye. Genes Dev 3:1099–1112.

    Article  PubMed  CAS  Google Scholar 

  29. Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T, Muskavitch MAT, Artavanis-Tsakonas S (1990) Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61:523–534.

    Article  PubMed  CAS  Google Scholar 

  30. Greenspan RJ (1990) The Notch gene, adhesion, and developmental fate in the Drosophila embryo. New Biol 2:595–600.

    PubMed  CAS  Google Scholar 

  31. Hartley DA, Preiss A, Artavanis-Tsakonas S (1988) A deduced gene product from the Drosophila neurogenic locus Enhancer of split shows homology to mammalian G-protein β-subunit. Cell 55:785–795.

    Article  PubMed  CAS  Google Scholar 

  32. Alonso MC, Cabrera CV (1988) The achaete-scute gene complex of Drosophila melanogaster comprises four homologous genes. EMBO J 7:2585–2591.

    PubMed  CAS  Google Scholar 

  33. Busch JS, Sassone-Corsi P (1990) Dimers, leucine zippers and DNA-binding domains. Trends Genet 6:36–40.

    Article  PubMed  CAS  Google Scholar 

  34. Davis RL, Cheng PF, Lassar AB, Weintraub H (1990) The MyoD DNA binding domain contains a recognition code for muscle specific gene activation. Cell 60:733–746.

    Article  PubMed  CAS  Google Scholar 

  35. Jones N (1990) Transcriptional regulation by dimerization: two sides to an incestuous relationship. Cell 61:9–11.

    Article  PubMed  CAS  Google Scholar 

  36. Olson EN (1990) MyoD family: a paradigm for development? Genes Dev 4:1454–1461.

    Article  PubMed  CAS  Google Scholar 

  37. Villares R, Cabrera CV (1987) The achaete-scute gene complex of Drosophila melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50:415–424.

    Article  PubMed  CAS  Google Scholar 

  38. Brand M, Campos-Ortega JA (1990) Second site modifiers of the split mutation of Notch define genes involved in neurogenesis in Drosophila melanogaster. Wilhelm Roux’s Arch Dev Biol 198:275–285.

    Article  Google Scholar 

  39. Cabrera CV (1990) Lateral inhibition and cell fate during neurogenesis in Drosophila: the interactions between scute, Notch and Delta. Development 109:733–742.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Campos-Ortega, J.A., Knust, E. (1992). Genetic Mechanisms in Early Neurogenesis of Drosophila melanogaster . In: Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77043-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77043-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77045-6

  • Online ISBN: 978-3-642-77043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics