Skip to main content

The Rhizobium-Legume Symbiosis

  • Chapter
Development

Abstract

Nitrogen is an essential nutrient. As N2 gas it is a major constituent of the atmosphere, but N2 is chemically inert and therefore unavailable as a source of nitrogen for use by most living organisms. However, some bacteria have the ability to reduce N2 and thereby “fix” atmospheric nitrogen using the enzyme nitrogenase. Many leguminous plants have capitalised on this special bacterial asset by going into partnership with nitrogen-fixing bacteria called rhizobia. In return for supplying nutrients to the bacteria, the plants receive a supply of reduced nitrogen. In essence, the legumes create a highly specialised environment within which the bacteria fix nitrogen. These specialised plant structures are called nodules; usually they are found on roots, but they also occur on the stems of some legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergersen FJ (1982) Root nodules of legumes: structure and functions. Research Studies Press, John Wiley and Sons, Chichester.

    Google Scholar 

  2. Dart PJ (1977) Infection and development of leguminous root nodules. In: Hardy RWF, Silver WS (eds) A treatise on dinitrogen fixation, III, Biology. Wiley, New Nork, pp 367–472.

    Google Scholar 

  3. Young JPW, Johnston AWB (1989) The evolution of specificity in the legume-Rhizobium symbiosis. Trends Ecol Evol 4:341–349.

    Article  PubMed  CAS  Google Scholar 

  4. Long SR (1989) Rhizobium genetics. Annu Rev Genet 23:483–506.

    Article  PubMed  CAS  Google Scholar 

  5. Sprent JI (1989) Which steps are essential for the formation of functional legume nodules? New Phytol 111:129–153.

    Article  Google Scholar 

  6. Carroll BJ, Mathews A (1990) Nitrate inhibition of nodulation in legumes. In: Gresshoff PM (ed) Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, pp 159–180.

    Google Scholar 

  7. Weeden NF, Kneen BE, LaRue TA (1990) Genetic analysis of sym genes and other related genes in Pisum sativum. In: Gresshoff PM, Roth J, Stacey G, Newton W (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 323–330.

    Google Scholar 

  8. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784.

    Article  PubMed  CAS  Google Scholar 

  9. Long SR (1989) Life together in the underground. Cell 56:203–214.

    Article  PubMed  CAS  Google Scholar 

  10. Rolfe B, Gresshoff P (1988) Genetic analysis of legume nodule initiation. Annu Rev Plant Physiol 39:297–319.

    Article  Google Scholar 

  11. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, deBilly F, Promé J-C, Dénarié J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673.

    Article  CAS  Google Scholar 

  12. Calvert HE, Pence MK, Pierce M, Malik NSA, Bauer DW (1984) Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Can J Bot 62:2375–2384.

    Article  Google Scholar 

  13. Diaz CL, Melchers LS, Hooykaas, PJJ, Lugtenberg BJJ, Kijne JW (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579–581.

    Article  CAS  Google Scholar 

  14. Scheres B, van de Wiel C, Zalensky A, Horvath B, Spaink H, van Eck H, Zwartkruis F, Wolters AM, Gloudemans T, Van Kämmen A, Bisseling T (1990) The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 60:281–294.

    Article  PubMed  CAS  Google Scholar 

  15. Robertson JG, Wells B, Brewin NJ, Wood EA, Knight CD, Downie JA (1985) The legume-Rhizobium symbiosis: a cell surface interaction. J Cell Sci (Suppl) 2:317–331.

    CAS  Google Scholar 

  16. Sharma SB, Signer ER (1990) Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes Dev 4:344–356.

    Article  PubMed  CAS  Google Scholar 

  17. van de Wiel C, Scheres B, Franssen H, van Lierop M-J, van Lammeren A, van Kämmen A, Bisseling T (1990) The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J 9:1–7.

    PubMed  Google Scholar 

  18. Appleby CA (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol35:443–478.

    Article  CAS  Google Scholar 

  19. Batut J, Daveran-Mingot M-L, David M, Jacobs J, Garnerone AM, Kahn D (1989) fixK, a gene homologus withfrn and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBO J 8:1279–1286.

    PubMed  CAS  Google Scholar 

  20. Mellor RB (1990) Bacteroids in the Rhizobium-legume symbiosis inhabit a plant lytic compartment: implications for other microbial endosymbioses. J Exp Bot 40:831–839.

    Article  Google Scholar 

  21. Saier MH, Wu L-F, Reizer J (1990) Regulation of bacterial physiological processes by three types of protein phosphorylating systems. TIBS 15:391–395.

    PubMed  CAS  Google Scholar 

  22. Verma DPS, Delauney AJ (1988) Root nodule symbiosis: Nodulins and nodulin genes. In: Verma DPS, Goldberg RB (eds) Plant gene research. Springer, Berlin Heidelberg New York, pp 169–199.

    Google Scholar 

  23. Forde BG, Cullimore JV (1989) The molecular biology of glutamine synthetase in higher plants. Oxford Surv Plant Mol Cell Biol 6:247–296.

    CAS  Google Scholar 

  24. Nap JP, Bisseling T (1990) Developmental biology of a plant-prokaryote symbiosis: the legume root nodule. Science 250:948–954.

    Article  PubMed  CAS  Google Scholar 

  25. Verma DPS, Long S (1983) The molecular biology of the Rhizobium-legume symbiosis. In: Jeon K (ed) International review of cytology. Academic Press, New Nork, pp 211–245 (Suppl 14).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Downie, A., Brewin, N. (1992). The Rhizobium-Legume Symbiosis. In: Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77043-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77043-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77045-6

  • Online ISBN: 978-3-642-77043-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics