Skip to main content

Mechanism and Control of Cellular DNA Replication

  • Conference paper
DNA Replication and the Cell Cycle

Part of the book series: Colloquium der Gesellschaft für Biologische Chemie ((MOSBACH,volume 43))

  • 96 Accesses

Abstract

Our understanding of DNA replication in bacteria has relied heavily upon studies on the replication of bacteriophage and plasmid chromosomes and the ability to compare and contrast the mechanisms of DNA synthesis and the functions of the replicative enzymes. In much the same way, studies of the mammalian DNA viruses have contributed to an understanding of the enzymology of cellular DNA replication. The choice model system to date for understanding the enzymology of eukaryotic DNA replication has been the study of Simian Virus 40 (SV40) DNA replication. This is due to the fact that SV40 DNA exists in the cell as a small, circular chromosome that can be thought of as the equivalent of a single replicon within the larger cellular chromosomes. Furthermore, SV40 DNA exists in a chromatin structure that resembles the structure of cellular chromatin and therefore could be a useful model for chromosome, as well as DNA replication (Stillman 1986; DePamphilis and Bradley 1986; Cheng and Kelly 1989; Smith and Stillman 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Araki H, Ropp PA, Johnson AL, Johnston LH, Morrison A & Sugino A (1992) DNA polymerase II, the probable homolog of mammalian DNA polymerase ε, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J 11:733–740

    PubMed  CAS  Google Scholar 

  • Bauer GA & Burgers PMJ (1988) The yeast analog of mammalian cyclin/proliferatingn-cell nuclear antigen interacts with mammalian DNA polymerase δ. Proc Natl Acad Sci USA 85:7506–7510

    Article  PubMed  CAS  Google Scholar 

  • Bauer GA, Heller HM & Burgers PMJ (1988) DNA polymerase III from Saccharomyces cerevisiae I purification and characterization. J Biol Chem 263:917–924

    PubMed  CAS  Google Scholar 

  • Bell SP & Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134

    Article  PubMed  CAS  Google Scholar 

  • Borowiec JA, Dean FB, Bullock PA & Hurwitz J (1990) Binding and unwinding - how T-anti-gen engages the SV40 origin of DNA replication. Cell 60:181–184

    Article  PubMed  CAS  Google Scholar 

  • Borowiec JA & Hurwitz J (1988) Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. EMBO J 7:3149–3158

    PubMed  CAS  Google Scholar 

  • Boulet A, Simon M, Faye G, Bauer GA & Burgers PMJ (1989) Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase ID. EMBO J 8:1849–1854

    PubMed  CAS  Google Scholar 

  • Bramhill D & Komberg A (1988) A model for initiation at origins of DNA replication. Cell 54:915–918

    Article  PubMed  CAS  Google Scholar 

  • Brill SJ & Stillman B (1989) Yeast replication factor-A functions in the unwinding of the SV40 origin of DNA replication. Nature 342:92–95

    Article  PubMed  CAS  Google Scholar 

  • Brill SJ & Stillman B (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5:1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Buchman AR, Kimmerly WJ, Rine J & Kornberg RD (1988) Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol 8:210–255

    CAS  Google Scholar 

  • Budd M & Campbell JL (1987) Temperature-sensitive mutants of yeast DNA polymerase I.Proc Nad Acad Sci USA 84:2838–2842

    Article  CAS  Google Scholar 

  • Burgers PMJ (1991) Saccharomyces cerevisiae replication factor C II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases δ and ε. J Biol Chem 266:22698–22706

    PubMed  CAS  Google Scholar 

  • Campbell JL & Newlon CS (1991) Chromosomal DNA replication. In: The molecular and cellular biology of the yeastSaccharomyces. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Challberg MD & Kelly TJ (1989) Animal virus DNA replication. Annu Rev Biochem 58:671–717

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Pan Z-Q & Hurwitz J (1992) Sequence and expression in Escherichia coli of the 40- kDa subunit of activator 1 (replication factor C) of HeLa cells. Proc Nad Acad Sci USA 89:2516–2520

    Article  CAS  Google Scholar 

  • Cheng L & Kelly TJ (1989) Transcriptional activator nuclear factor I stimulates the replication of SV40 minichromosomes in vivo and in vitro. Cell 59:541–551

    Article  PubMed  CAS  Google Scholar 

  • Collins KL & Kelly TJ (1991) Effects of T antigen and replication protein A on the initiation of DNA synthesis by DNA polymerase α-primase. Mol Cell Biol 11:2108–2115

    PubMed  CAS  Google Scholar 

  • Coverley D, Kenny MK, Munn M, Rupp WD, Lane DP & Wood RD (1991) Requirement for the replication protein SSB in human DNA excision repair. Nature 349:538–541

    Article  PubMed  CAS  Google Scholar 

  • D’Urso G, Marraccino RL, Marshak DR & Roberts JM (1990) Cell cycle control of DNA replication by a homologue from human cells of the p34cdc2 protein kinase. Science 250:786–791

    Article  PubMed  Google Scholar 

  • Deb S, DeLucia AL, Baur C-P, Koff A & Tegtmeyer P (1986) Domain structure of the simian virus 40 core origin of replication. Mol Cell Biol 6:1663–1670

    PubMed  CAS  Google Scholar 

  • DePamphilis ML (1988) Transcriptional elements as components of eukaryotic origins of DNA replication. Cell 52:635–638

    Article  PubMed  CAS  Google Scholar 

  • DePamphilis ML & Bradley MK (1986) Replication of SV40 and polyoma virus chromosomes. In: Salzman NP (ed) The Papovaviridae, vol I. Plenum, New York, pp 99–246

    Chapter  Google Scholar 

  • Diffley JFX & Cocker J (1992) Protein-DNA interactions at a yeast replication origin. Nature 357:169–172

    Article  PubMed  CAS  Google Scholar 

  • Din S, Brill S, Fairman MP & Stillman B (1990) Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev 4:968–977

    Article  PubMed  CAS  Google Scholar 

  • DiNardo S, Voelkel KA & Sternglanz R (1984) DNA topoisomerase II mutant of Sacchromyce cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Nad Acad Sci USA 81:2616–2620

    Article  CAS  Google Scholar 

  • Dodson M, Dean FB, Bullock P, Echols H & Hurwitz J (1987) Unwinding of duplex DNA from the SV40 origin of replication by T antigen. Science 238:964–967

    Article  PubMed  CAS  Google Scholar 

  • Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelly TJ & Fanning E (1992) Interaction of DNA polymerase a-primase with cellular replication protein A and S V40 T antigen. EMBO J 11:769–776

    PubMed  CAS  Google Scholar 

  • Dornreiter I, Höss A, Arthur AK & Fanning E (1990) SV40 T antigen binds directly to the large subunit of purified DNA polymerase alpha. EMBO J 9:3329–3336

    PubMed  CAS  Google Scholar 

  • Dutta A & Stillman B (1992) cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11:2189–2199

    PubMed  CAS  Google Scholar 

  • Erdile LF, Wold MS & Kelly TJ (1990) The primary structure of the 32-kDa subunit of human replication protein. A J Biol Chem 265:3177–3182

    CAS  Google Scholar 

  • Erdile LF, Heyers W-D, Kolodner R & Kelly TJ (1991) Characterization of a cDNA encoding the 70-kDa single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. J Biol Chem 266:12090–12098

    PubMed  CAS  Google Scholar 

  • Fairman MP & Stillman B (1988) Cellular factors required for multiple stages of SV40 replication in vitro. EMBO J 7:1211–1218

    PubMed  CAS  Google Scholar 

  • Fangman WL & Brewer BJ (1991) Activation of replication origins within yeast chromosomes. Annu Rev Cell Biol 7:375–402

    Article  PubMed  CAS  Google Scholar 

  • Fanning E (1992) Simian Virus 40 large T antigen: the puzzle, the pieces, and the emerging picture. J Virol 66:1289–1293

    PubMed  CAS  Google Scholar 

  • Fien K & Stillman B (1992) Identification of replication factor C from Saccharomyces cere- visiae: a component of the leading-strand DNA replication complex. Mol Cell Biol 12:155–163

    PubMed  CAS  Google Scholar 

  • Gannon JV & Lane DP (1987) p53 and DNA polymerase α compete for binding to SV40 T antigen. Nature 329:456–458

    Article  PubMed  CAS  Google Scholar 

  • Gannon JV & Lane DP (1990) Interactions between SV40 T antigen and DNA polymerase α. New Biol 2:84–92

    PubMed  CAS  Google Scholar 

  • Goetz GS, Dean FB, Hurwitz J & Matson SW (1988) The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. J Biol Chem 263:383–392

    PubMed  CAS  Google Scholar 

  • Heyer W-D, Rao MRS, Erdile LF, Kelly TJ & Kolodner RD (1990) An essential Saccharomyces cerevisiae single-stranded DNA binding protein is homologous to the large subunit of human RP-A. EMBO J 9:2321–2329

    PubMed  CAS  Google Scholar 

  • Holm C, Goto T, Wang JC & Botstein D (1985) DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41:553–563

    Article  PubMed  CAS  Google Scholar 

  • Ishimi Y, Claude A, Bullock P & Hurwitz J (1988) Complete enzymatic synthesis of DNA containing the SV40 origin of replication. J Biol Chem 263:19723–19733

    PubMed  CAS  Google Scholar 

  • Jacob F, Brenner S and Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp Quant Biol 28:329–348

    CAS  Google Scholar 

  • Kenny MK, Lee S-H & Hurwitz J (1989) Multiple functions of human single-stranded-DNA binding protein in simian virus 40 DNA replication: Single-strand stabilization and stimulation of DNA polymerases α and δ. Proc Nad Acad Sci USA 86:9757–9761

    Article  CAS  Google Scholar 

  • Kenny MK, Schlegel U, Furneaux H & Hurwitz J (1990) The role of human single stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J Biol Chem 265:7693–7700

    PubMed  CAS  Google Scholar 

  • Kimmerly W, Buchman A, Kornberg R & Rine J (1988) Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer. EMBO J 7:2241–2253

    PubMed  CAS  Google Scholar 

  • Kornberg A & Baker TA (1992) DNA Replication 2. ed. Freeman New York

    Google Scholar 

  • Lanford RE (1988) Expression of simian virus 40 T antigen in insect cells using a baculovirus expression vector. Virology 167:72–81

    Article  PubMed  CAS  Google Scholar 

  • Lee MYWT, Tan C-K, Downey KM & So AG (1984) Further studies on calf thymus DNA polymerase 8 purified to homogeneity by a new procedure. Biochemistry 2:1906–1913

    Article  Google Scholar 

  • Lee S-H, Eki T & Hurwitz J (1989) Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases a and 8. Proc Natl Acad Sci USA 86:7361–7365

    Article  PubMed  CAS  Google Scholar 

  • Lee S-H, Kwong AD, Pan Z-Q & Hurwitz J (1991a) Studies on the activator 1 protein complex, an accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase 8. J Biol Chem 266:594–602

    PubMed  CAS  Google Scholar 

  • Lee S-H, Zhen-Qiang P, Kwong AD, Burgers PMJ & Hurwitz J (1991b) Synthesis of DNA by DNA polymerase e in vitro. J Biol Chem 266.22707–22717

    PubMed  CAS  Google Scholar 

  • Li JJ & Kelly TJ (1984) Simian virus 40 DNA replication in vitro. Proc Nad Acad Sci USA 81:6973–6977

    Article  CAS  Google Scholar 

  • Li JJ & Kelly TJ (1985) Simian virus 40 DNA replication in vitro: Specificity of initiation and evidence for bidirectional replication. Mol Cell Biol 5:1238–1246

    PubMed  CAS  Google Scholar 

  • Marahrens Y & Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Eki T & Hurwitz J (1990) Studies on the initiation and elongation reactions in the simian virus 40 DNA replication system. Proc Natl Acad Sci USA 87:9712–9716

    Article  PubMed  CAS  Google Scholar 

  • Melendy TE & Stillman B (1991) Purification of DNA polymerase δ as an essential SV40 DNA replication factor. J Biol Chem 266:1942–1949

    PubMed  CAS  Google Scholar 

  • Moore SP, Erdile L, Kelly T & Fishel R (1991) The human homologous pairing protein HPP-1 is specifically stimulated by the cognate single-stranded binding protein hRP-A. Proc Natl Acad Sci USA 88:9067–9071

    Article  PubMed  CAS  Google Scholar 

  • Morrison A, Araki H, Clark B, Hamatake RK & Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Wobbe CR, Weissbach L, Dean FB & Hurwitz J (1986) Role of DNA polymerase a and DNA primase in simian virus 40 DNA replication in vitro. Proc Nad Acad Sci USA 8:2869–2873

    Article  Google Scholar 

  • Pines J & Hunter T (1990) p34cdc2: the S and M kinase. New Biol 2:389–401

    PubMed  CAS  Google Scholar 

  • Pizzagalli A, Vasasnini P, Pievani P & Lucchini G (1988) DNA polymerase I gene of Saccha- romyces cerevisiae: nucleotide sequence, mapping of a temperature-sensitive mutation, and protein homology with other DNA polymerases. Proc Nad Acad Sci USA 85:3772–3776

    Article  CAS  Google Scholar 

  • Prelich G, Kostura M, Marshak DR, Mathews MB & Stillman B (1987) The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature 326:471–475

    Article  PubMed  CAS  Google Scholar 

  • Prelich G & Stillman B (1988) Coordinated leading and lagging strand synthesis during SV40 DNA replication in vitro requires PCNA. Cell 53:117–126

    Article  PubMed  CAS  Google Scholar 

  • Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM & Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase δ auxiliary protein. Nature 326:517–520

    Article  PubMed  CAS  Google Scholar 

  • Rivier DH & Rine J (1992) An origin of DNA replication and a transcription silencer require a common element. Science 256:659–663

    Article  PubMed  CAS  Google Scholar 

  • Roberts JM & D’Urso G (1988) An origin unwinding activity regulates initiation of DNA replication during mammalian cell cycle. Science 241:1486–1489

    Article  PubMed  CAS  Google Scholar 

  • Simanis V & Lane DP (1985) An immunoaffinity purification procedure for SV40 large T antigen. Virology 144:80–100

    Article  Google Scholar 

  • Sitney KC, Budd ME & Campbell JL (1989) DNA polymerase IH, a second essential DNA polymerase, is encoded by die S. cerevisiae CDC2 gene. Cell 56:599–605

    Article  PubMed  CAS  Google Scholar 

  • Smale ST & Tjian R (1986) T-antigen-DNA polymerase a complex implicated in simian virus 40 DNA replication. Mol Cell Biol 6:4077–4087

    PubMed  CAS  Google Scholar 

  • Smith S & Stillman B (1989) Purification and characterization of CAF-1, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25

    Article  PubMed  CAS  Google Scholar 

  • Snapka R, Powelson MA & Strayer JM (1988) Swiveling and decatenation of replicating simian virus 40 genomes in vivo. Mol Cell Biol 8:515–521

    PubMed  CAS  Google Scholar 

  • Stahl H, Droge P & Knippers R (1986) DNA helicase activity of SV40 large tumor antigen. EMBO J 5:1939–1944

    PubMed  CAS  Google Scholar 

  • Stillman B (1986) Chromatin assembly during SV40 DNA replication in vitro. Cell 45:555–565

    Article  PubMed  CAS  Google Scholar 

  • Stillman B (1989) Initiation of Eukaryotic DNA replication in vitro. Ann Rev Cell Biol 5:197–245

    Article  PubMed  CAS  Google Scholar 

  • Stillman BW & Gluzman Y (1985) Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells. Mol Cell Biol 5:2051–2060

    PubMed  CAS  Google Scholar 

  • Stinchcomb DT, Struhl K & Davis RW (1979) Isolation and characterization of a chromosomal replicator. Nature 282:39–43

    Article  PubMed  CAS  Google Scholar 

  • Sundin O & Varshavsky A (1980) Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21:103–114

    Article  PubMed  CAS  Google Scholar 

  • Sundin O & Varshavsky A (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimere: dissection of the final stages of SV40 DNA replication. Cell 25:659–669

    Article  PubMed  CAS  Google Scholar 

  • Sweder K, Rhode PR & Campbell JL (1988) Aerification and characterization of proteins that bind ot yeast ARSs. J Biol Chem 263:17270–17277

    PubMed  CAS  Google Scholar 

  • Tan CK, Castillo C, So AG & Downey KM (1986) An auxiliary protein for DNA polymerased from fetal calf thymus. J Biol Chem 261:12310–12316

    PubMed  CAS  Google Scholar 

  • Thrash C, Voelkel K, DiNardo S & Sternglanz R (1984) Identification of Saccharomyces cerevisiae mutant deficient in DNA topoisomerase I activity. J Biol Chem 259:1375–1377

    PubMed  CAS  Google Scholar 

  • Tsurimoto T, Fairman MP & Stillman B (1989) Simian virus 40 DNA replication in vitro: identification of multiple stages of initiation. Mol Cell Biol 9:3839–3849

    PubMed  CAS  Google Scholar 

  • Tsurimoto T, Melendy T & Stillman B (1990) Two DNA polymerase complexes sequentially initiate lagging and leading strand synthesis at the simian virus 40 origin of DNA replication. Nature 346:534–539

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto T & Stillman B (1989a) Multiple replication factors augment DNA synthesis by the two eukaryotic DNA polymerases, α and δ. EMBO J 8:3883–3889

    PubMed  CAS  Google Scholar 

  • Tsurimoto T & Stillman B (1989b) Purificationof a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol Cell Biol 9:609–619

    PubMed  CAS  Google Scholar 

  • Tsurimoto T & Stillman B (1990) Functions of replication factor C and proliferating cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci USA 87:1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto T & Stillman B (1991a) Replication factors required for SV40 DNA replication in vitro. I. DNA structure specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory factors. J Biol Chem 266:1950–1960

    PubMed  CAS  Google Scholar 

  • Tsurimoto T & Stillman B (1991b) Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase α and δ during initiation of leading and lagging strand synthesis. J Biol Chem 266:1961–1968

    PubMed  CAS  Google Scholar 

  • Uemura T & Yanagida M (1984) Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J 3:1737–1744

    PubMed  CAS  Google Scholar 

  • Wang TS-F (1991) Eukaryotic DNA polymerases. Annu Rev Biochem 60:513–552

    Article  PubMed  CAS  Google Scholar 

  • Wang TS-F, Wong SW & Kom D (1989) Human DNA polymerase α: predicted functional domains and relationships with DNA polymerases. FASEB J 3:14–21

    PubMed  CAS  Google Scholar 

  • Weaver DT, Fields-Berry SC & DePamphilis ML (1985) The termination region for SV40 DNA replication directs the mode of separation for the two sibling molecules. Cell 41:565–575

    Article  PubMed  CAS  Google Scholar 

  • Weinberg DH, Collins KL, Simancek P, Russo A, Old MS, Virshup DM & Kelly TJ (1990) Reconstitution of simian virus 40 DNA replication with purified proteins. Proc Natl Acad Sci USA 87:8692–8696

    Article  PubMed  CAS  Google Scholar 

  • Weinberg DH & Kelly TJ (1989) Requirement for two DNA polymerases in the replication of simian virus 40 DNA in vitro. Proc Natl Acad Sci USA 86:9742–9746

    Article  PubMed  CAS  Google Scholar 

  • Wessel R, Schweizer J & Stahl H (1992) Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J Virol 66:804–815

    PubMed  CAS  Google Scholar 

  • Wiekowski M, Droge P & Stahl H (1987) Monoclonal antibodies as probes for a function of large T antigen during the elongation process of simian virus 40 DNA replication. J Virol 61:411–418

    PubMed  CAS  Google Scholar 

  • Wiekowski M, Schwarz MW & Stahl H (1988) Simian virus 40 large T antigen DNA helicase. Characterization of the ATP-asedependent DNA unwinding activity and its substrate requirements. J Biol Chem 263:436–42

    PubMed  CAS  Google Scholar 

  • Wobbe CR, Dean F, Weissbach L & Hurwitz J (1985) In vitro replication of duplex circular DNA containing the simian virus 40 DNA origin site. Proc Natl Acad Sci USA 82:5710–5714

    Article  PubMed  CAS  Google Scholar 

  • Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P & Hurwitz J (1987) Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci USA 84:1834–1838

    Article  PubMed  CAS  Google Scholar 

  • Wold MS & Kelly T (1988) Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 85:2523–2527

    Article  PubMed  CAS  Google Scholar 

  • Wold MS, Weinberg DH, Virshup DM, Li JJ & Kelly TJ (1989) Identification of cellular proteins required for simian virus 40 DNA replication. J Biol Chem 264:2801–2809

    PubMed  CAS  Google Scholar 

  • Yang L, Wold MS, Li JJ, Kelly TJ & Liu LF (1987) Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci USA 84:950–954

    Article  PubMed  CAS  Google Scholar 

  • Yoder BL & Burgers PMJ (1991) Saccharomyces cerevisiae replication factor C I. Purification and characterization of its ATPase activity. J Biol Chem 266:22689–22697

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stillman, B. (1993). Mechanism and Control of Cellular DNA Replication. In: Fanning, E., Knippers, R., Winnacker, EL. (eds) DNA Replication and the Cell Cycle. Colloquium der Gesellschaft für Biologische Chemie, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77040-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77040-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77042-5

  • Online ISBN: 978-3-642-77040-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics