Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 178))

Abstract

Complement is a mediator system comprised of 12 activation proteins and at least 11 inhibitors. The activation proteins interact sequentially to generate cleavage fragments and condensation products with specific and potent biologic activity. Activated complement proteins can function as anaphylatoxins, adherence factors, chemotaxins, opsonins, and a transmembrane pore, which can be lytic (reviewed in Fries and Frank 1987). Regulated complement activation is essential for the survival of the host, while unregulated complement activation contributes to inflammation and is detrimental to the host. Complement is regulated by the specificity of its activation, by the lability of its activation products, and by the potent inhibitors found in the fluid phase and within the membranes of host cells. The structure, function, and expression of one important membrane regulator of complement, namely, the decay accelerating factor (DAF), will be reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asch AS, Kinoshita T, Jaffe EA, Nussenzweig V (1986) Decay-accelerating factor is present on cultured human umbilical vein endothelial cells. J Exp Med 163: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Ashwell JD, Klusner RD (1990) Genetic and mutational analysis of the T-cell antigen receptor. Annu Rev Immunol 8: 139–167

    Article  PubMed  CAS  Google Scholar 

  • Aster R, Enright S (1969) A platelet and granulocyte membrane defect in paroxysmal nocturnal hemoglobinuria: usefulness for the detection of platelet antibodies. J Clin Invest 48: 1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Berger M, Medof ME (1987) Increased expression of complement decay-accelerating factor during activation of human neutrophils. J Clin Invest 79: 214–220

    Article  PubMed  CAS  Google Scholar 

  • Borregaard N, Miller LJ, Springer TA (1987) Chemoattractant-regulated mobilization of a novel intracellular compartment in human neutrophils. Science 237: 1204–1206

    Article  PubMed  CAS  Google Scholar 

  • Borregaard N, Christensen L, Bjerrum OW, Birgens HS, Clemmensen I (1990) Identification of a highly mobilizable subset of human neutrophil intracellular vesicles that contain tetranectin and latent alkaline phosphatase. J Clin Invest 85: 408–416

    Article  PubMed  CAS  Google Scholar 

  • Butikofer P, Kuypers FA, Xu CM, Chiu DT, Lubin B (1989) Enrichment of two glycosyl-phosphatidylinositol-anchored proteins, acetylcholinesterase and decay accelerating factor, in vesicles released from human red blood cells. Blood. 74: 1481–1485

    PubMed  CAS  Google Scholar 

  • Caras IW, Weddell GN (1989) Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment. Science 243: 1196–1198

    Article  PubMed  CAS  Google Scholar 

  • Caras IW, Davitz MA, Rhee L, Weddell G, Martin DW Jr, Nussenzweig V (1987a) Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325: 545–548

    Article  PubMed  CAS  Google Scholar 

  • Caras IW, Weddell GN, Davitz MA, Nussenzweig V, Martin DJ (1987b) Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science 238: 1280–1283

    Article  PubMed  CAS  Google Scholar 

  • Caras IW, Weddell GN, Williams SR (1989) Analysis of the signal for attachment of a glycophospholipid membrane anchor. J Cell Biol 108: 1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Carroll MC, Alicot EM, Katzman PJ, Klickstein LB, Smith JA, Fearon DT (1988) Organization of the genes encoding complement receptors type 1 and 2, decay-accelerating factor, and C4-binding protein in the RCA locus on human chromosome 1. J Exp Med 167: 1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Cheung NK, Walter El, Smith MW, Ratnoff WD, Tykocinski ML, Medof ME (1988) Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro. J Clin Invest 81: 1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Daniels GL, Tohyama H, Uchikawa M (1982) A possible null phenotype in the Cromer blood group complex. Transfusion 22: 362–363

    Article  PubMed  CAS  Google Scholar 

  • Davies A, Simmons DL, Hale G, Harrison RA, Tighe H, Lachmann PJ, Waldmann H (1989) CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med 170: 637–654

    Article  PubMed  CAS  Google Scholar 

  • Davis LS, Patel SS, Atkinson JP, Lipsky PE (1988) Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol 141: 2246–2252

    PubMed  CAS  Google Scholar 

  • Davitz MA, Low MG, Nussenzweig V (1986) Release of decay-accelerating factor (DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC). Selective modification of a complement regulatory protein. J Exp Med 163: 1150–1161

    Article  PubMed  CAS  Google Scholar 

  • Davitz MA, Hereid D, Shak S, Krakow J, Englund PT, Nussenzweig V (1987) A glycan-phosphatidylinositol-specific phospholipase D in human serum. Science 238: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Doering TL, Masterson WJ, Hart GW, Englund PT (1990) Biosynthesis of glycosyl phophatidylinositol membrane anchors. J Biol Chem 265: 611–614

    PubMed  CAS  Google Scholar 

  • Edberg JC, Salmon JE, Whitlow M, Kimberly RP (1991) Preferential expression of human Fc gammaRIIIPMN (CD16) in paroxysmal nocturnal hemoglobinuria. J Clin Invest 87: 58–67

    Article  PubMed  CAS  Google Scholar 

  • Fries LF III, Frank MM (1987) Molecular mechanisms of complement action. In: Stamatoyannopoules. Nienhuir AW, Leder P, Majerus PW (eds) The molecular basis of blood diseases. Saunders, Philadelphia, chap 13

    Google Scholar 

  • Fujita T, Inoue T, Ogawa K, Iida K, Tamura N (1987) The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb. J Exp Med 166: 1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Götze O Müller-Eberhard HJ (1972) Paroxysmal nocturnal hemoglobinuria. Hemolysis initiated by the C3 activator system. N Engl J Med 286: 180–184

    Article  PubMed  Google Scholar 

  • Halperin JA, Nicholson-Weller A (1989) Paroxysmal nocturnal hemoglobinuria. A complement- mediated disease. Compl Inflamm 6: 65–72

    CAS  Google Scholar 

  • Hänsch G, Hammer CH, Jiji R, Rother U, Shin ML (1983) Lysis of paroxysmal nocturnal hemoglobinuria erythrocytes by acid-activated serum. Immunobiology 164: 118–126

    Article  PubMed  Google Scholar 

  • Hänsch GM, Hammer CH, Vanguri P, Shin ML (1981) Homologous species restriction in lysis of erythrocytes by terminal complement proteins. Proc Natl Acad Sci USA 78: 5118–5121

    Article  PubMed  Google Scholar 

  • Hänsch GM, Schönermark S, Roelcke D (1987) Paroxysmal nocturnal hemoglobinuria type III. Lack of an erythrocyte membrane protein restricting the lysis by C5b-9. J Clin Invest 80: 7–12

    Article  PubMed  Google Scholar 

  • Hänsch GM, Weller PF, Nicholson-Weller A (1988) Release of C8 binding protein (C8bp) from the cell membrane by phosphatidylinositol-specific phospholipase C. Blood 72: 1089–1092

    PubMed  Google Scholar 

  • Hoffmann E (1969a) Inhibition of complement by a substance isolated from human erythrocytes I. Extraction from human erythrocyte stromata. Immunochemistry 6: 391–403

    Article  CAS  Google Scholar 

  • Hoffmann E (1969b) Inhibition of complement by a substance isolated from human erythrocytes II. Studies on the site and mechanism of action. Immunochemistry 6: 405–419

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann E, Etlinger HM (1973) Extraction of complement inhibitory factors from the erythrocytes of non-human species. J Immuno 111: 946–951

    CAS  Google Scholar 

  • Hoffmann E, Cheng W, Tomeu E, Renk C (1974) Resistance of sheep erythrocytes to immune lysis by treatment of the cells with a human erythrocyte extract: studies on the site of inhibition. J Immunol 113: 1501–1509

    PubMed  CAS  Google Scholar 

  • Holguin MH, Fredrick LR, Bernshaw NJ, Wilcox LA, Parker CJ (1989) Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Invest 84: 7–17

    Article  PubMed  CAS  Google Scholar 

  • Holmes CH, Simpson KL, Wainwright SD, Tate CG, Houlihan JM, Sawyer IH, Rogers IP, Spring FA, Anstee DJ, Tanner MJ (1990) Preferential expression of the complement regulatory protein decay accelerating factor at the fetomaternal interface during human pregnancy. J Immunol 144: 3099–3105

    PubMed  CAS  Google Scholar 

  • Houle JJ, Hoffmann EM (1984) Evidence for restriction of the ability of complement to lyse homologous erythrocytes. J Immunol 133: 1444–1452

    PubMed  CAS  Google Scholar 

  • Ito S, Tamura N, Fujita T (1989) Effect of decay-accelerating factor on the assembly of the classical and alternative pathway C3 convertases in the presence of C4 or C3 nephritic factor. Immunology 68: 449–452

    PubMed  CAS  Google Scholar 

  • Janatova J, Reid KBM, Willis AC (1989) Involvement of disulfide bonds in the structure of complement regulatory proteins: C4-binding protein. Biochemistry 28: 4754–4761

    Article  PubMed  CAS  Google Scholar 

  • Joiner KA, Dias daSilva W, Rimoldi MT, Hammer CH, Sher A, Kipnis TL (1988) Biochemical characterization of a factor produced by trypomastigotes of Trypanosoma cruzi that accelerates the decay of complement C3 convertases. J Biol Chem 263: 11327–11335

    PubMed  CAS  Google Scholar 

  • Kameyoshi Y, Matsushita M, Okada H (1989) Murine membrane inhibitor of complement which accelerates decay of human C3 convertase. Immunology 68: 439–444

    PubMed  CAS  Google Scholar 

  • Kammer GM, Walter El, Medof ME (1988) Association of cytoskeletal re-organization with capping of the complement decay-accelerating factor on T lymphocytes. J Immunol 141: 2924–2928

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Medof ME, Silber R, Nussenzweig V (1985) Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med 162: 75–92

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Medof ME, Nussenzweig V (1986) Endogenous association of decay-accelerating factor (DAF) with C4b and C3b on cell membranes. J Immunol 136: 3390–3395

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Rosenfeld SI, Nussenzweig V (1987) A high MW form of decay-accelerating factor (DAF-2) exhibits size abnormalities in paroxysmal nocturnal hemoglobinuria erythrocytes. J Immunol 138: 2994–2998

    PubMed  CAS  Google Scholar 

  • Lass JH, Walter El, Burris TE, Grossniklaus HE, Roat Ml, Skelnik DL, Needham L, Singer M, Medof ME (1990) Expression of two molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. Invest Ophthalmol Vis Sci 31: 1136–1148

    PubMed  CAS  Google Scholar 

  • Lederman MM, Purvis SF, Walter El, Carey JT, Medof ME (1989) Heightened complement sensitivity of acquired immunodeficiency syndrome lymphocytes related to diminished expression of decay-accelerating factor. Proc Natl Acad Sci USA 86: 4205–4209

    Article  PubMed  CAS  Google Scholar 

  • Lisanti MP, Caras IW, Davitz MA, Rodriguez BE (1989) A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J Cell Biol 109: 2145–2156

    Article  PubMed  CAS  Google Scholar 

  • Lozier J, Takahashi N, Putnam FW (1984) Complete amino acid sequence of human plasma beta 2-glycoprotein I. Proc Natl Acad Sci USA 81: 3640–3644

    Article  PubMed  CAS  Google Scholar 

  • Lublin DM, Atkinson JP (1990) Decay-accelerating factor and membrane cofactor protein. In: Lambris JD (ed) The third component of complement. Chemistry and biology. Springer, Berlin Heidelberg New York, pp 123–145 (Current topics in microbiology and immunology, vol 153)

    Google Scholar 

  • Lublin DM, Krsek SJ, Pangburn MK, Atkinson JP (1986) Biosynthesis and glycosylation of the human complement regulatory protein decay-accelerating factor. J Immunol 137: 1629–1635

    PubMed  CAS  Google Scholar 

  • Lublin DM, Lemons RS, Le BM, Holers VM, Tykocinski ML, Medof ME, Atkinson JP (1987) The gene encoding decay-accelerating factor (DAF) is located in the complement-regulatory locus on the long arm of chromosome 1. J Exp Med 165: 1731–1736

    Article  PubMed  CAS  Google Scholar 

  • Marques MB, Weller PF, Parsonnet J, Nicholson-Weller A (1989) Phosphatidylinositol-specific phospholipase C (PIPLC), a possible virulence factor of Staphylococcus aureus. J Clin Microbiol 27: 2451–2454

    PubMed  CAS  Google Scholar 

  • Medof ME, Kinoshita T, Nussenzweig V (1984) Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 160: 1558–1578

    Article  PubMed  CAS  Google Scholar 

  • Medof ME, Walter El, Roberts WL, Haas R, Rosenberry TL (1986) Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Biochemistry 25: 6740–6747

    Article  PubMed  CAS  Google Scholar 

  • Medof ME, Lublin DM, Holers VM, Ayers DJ, Getty RR, Leykam JF, Atkinson JP, Tykocinski ML (1987a) Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci USA 84: 2007–2011

    Article  PubMed  CAS  Google Scholar 

  • Medof ME, Walter El, Rutgers JL, Knowles DM, Nussenzweig V (1987) Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 165: 848–864

    Article  PubMed  CAS  Google Scholar 

  • Merry AH, Rawlinson VI, Uchikawa M, Daha MR, Sim RB (1989) Studies on the sensitivity to complement-mediated lysis of erythrocytes (Inab phenotype) with a deficiency of DAF (decay accelerating factor). Br J Haematol 73: 248–253

    Article  PubMed  CAS  Google Scholar 

  • Moran P, Raab H, Kohr WJ, Caras IW (1991) Glycophospholipid membrane anchor attachment. J Biol Chem 266: 1250–1257

    PubMed  CAS  Google Scholar 

  • Nicholson-Weller A, Burge J, Austen KF (1981) Purification from guinea pig erythrocyte stroma of a decay-accelerating factor for the classical C3 convertase, C4b,2a. J Immunol 127: 2035–2039

    PubMed  CAS  Google Scholar 

  • Nicholson-Weller A, Burge J, Fearon DT, Weller PF, Austen KF (1982) Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol 129: 184–189

    PubMed  CAS  Google Scholar 

  • Nicholson-Weller A, March JP, Rosenfeld SI, Austen KF (1983) Affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria are deficient in the complement regulatory protein, decay accelerating factor. Proc Natl Acad Sci USA 80: 5066–5070

    Article  PubMed  CAS  Google Scholar 

  • Nicholson-Weller A, March JP, Rosen CE, Spicer DB, Austen KF (1985a) Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system. Blood 65: 1237–1244

    PubMed  CAS  Google Scholar 

  • Nicholson-Weller A, Spicer DB, Austen KF (1985b) Deficiency of the complement regulatory protein, “decay-accelerating factor”, on membranes of granulocytes, monocytes, and platelets in paroxysmal nocturnal hemoglobinuria. N Engl J Med 312: 1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Nicholson-Weller A, Russian D, Austen KF (1986) Natural killer cells are deficient in the surface expression of the complement regulatory protein, decay accelerating factor (DAF). J Immunol 137: 1275–1279

    PubMed  CAS  Google Scholar 

  • Okada H, Nagami Y, Takahashi K, Okada N, Hideshima T, Takizawa H, Kondo J (1989) 20 KDa homologous restriction factor of complement resembles T cell activating protein. Biochem Biophys Res Commun 162: 1553–1559

    Article  PubMed  CAS  Google Scholar 

  • Opferkuch W, Loos M, Borsos T (1971) Isolation and characterization of a factor from human and guinea pig serum that accelerates the decay of the SAC142. J Immunol 107: 21–26

    Google Scholar 

  • Pangburn MK (1986) Differences between the binding sites of the complement regulatory proteins DAF, CR1, and factor H on C3 convertases. J Immunol 136: 2216–2221

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1983) Deficiency of an erythrocyte membrane protein with complement regulatory activity in paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci USA 80: 5430–5434

    Article  PubMed  CAS  Google Scholar 

  • Pearce EJ, Hall BF, Sher A (1990) Host-specific evasion of the alternative complement pathway by schistosomes correlates with the presence of a phospholipase C- sensitive surface molecule resembling human decay accelerating factor. J Immunol 144: 2751–2756

    PubMed  CAS  Google Scholar 

  • Perkins SJ, Haris PI, Sim RB, Chapman D (1988) A study of the structure of human complement component factor H by Fourier transform infrared spectroscopy and secondary structure averaging methods. Biochemistry 27: 4004–4012

    Article  PubMed  CAS  Google Scholar 

  • Post TW, Arce MA, Liszewski MK, Thompson ES, Atkinson JP, Lublin DM (1990) Structure of the gene for human complement protein decay accelerating factor. J Immunol 144: 740–744

    PubMed  CAS  Google Scholar 

  • Quigg RJ, Nicholson-Weller A, Cybulsky AV, Badalamenti J, Salant DJ (1989) Decay accelerating factor regulates complement activation on glomerular epithelial cells. J Immunol 142: 877–882

    PubMed  CAS  Google Scholar 

  • Reddy P, Caras I, Krieger M (1989) Effects of O-linked glycosylation on the cell surface expression and stability of decay-accelerating factor, a glycophospholipid-anchored membrane protein. J Biol Chem 264: 17329–17336

    PubMed  CAS  Google Scholar 

  • Reid KBM, Bentley DR, Campbell RD, Chung LP, Sim RB, Kristensen T, Tack BF (1986) Complement system proteins which interact with C3b or C4b. A superfamily of structurally related proteins. Immunol Today 7: 230–234

    Article  CAS  Google Scholar 

  • Rey-Campos J, Rubinstein P, Rodriguez de Cordoba S (1987) Decay-accelerating factor. Genetic polymorphism and linkage to the RCA (regulator of complement activation) gene cluster in humans. J Exp Med 166: 246–252

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG, Suh PG, Ryu SH, Lee SY (1989) Studies of inositol phospholipid-specific phospholipase C. Science 244: 546–550

    Article  PubMed  CAS  Google Scholar 

  • Rimoldi MT, Sher A, Heiny S, Lituchy A, Hammer CH, Joiner K (1988) Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases. Proc Natl Acad Sci USA 85: 193–197

    Article  PubMed  CAS  Google Scholar 

  • Roberts WN, Wilson JG, Wong W, Jenkins DJ, Fearon DT, Austen KF, Nicholson-Weller A (1985) Normal function of CR1 on affected erythrocytes of patients with paroxysmal nocturnal hemoglobinuria. J Immunol 134: 512–517

    PubMed  CAS  Google Scholar 

  • Robinson PJ (1991) Phosphatidylinositol membrane anchors and T-cell activation. Immunol Today 12: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Rosse W (1973) Variations in the red cells in paroxysmal nocturnal haemoglobinuria. Br J Haematol 24: 327–342

    Article  PubMed  CAS  Google Scholar 

  • Schönermark S, Rauterberg EW, Shin ML, Loke S, Roelcke D, Hänsch GM (1986) Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol 136: 1772–1776

    PubMed  Google Scholar 

  • Seya T, Farries T, Nickells M, Atkinson JP (1987) Additional forms of human decay-accelerating factor (DAF). J Immunol 139: 1260–1267

    PubMed  CAS  Google Scholar 

  • Shin ML, Hänsch G, Hu VW, Nicholson-Weller A (1986) Membrane factors responsible for homologous species restriction of complement-mediated lysis: evidence for a factor other than DAF operating at the stage of C8 and C9. J Immunol 136: 1777–1782

    PubMed  CAS  Google Scholar 

  • Spring FA, Judson PA, Daniels GL, Parsons SF, Mallinson G, Anstee DJ (1987) A human cell-surface glycoprotein that carries Cromer-related blood group antigens on erythrocytes and is also expressed on leucocytes and platelets. Immunology 62: 307–313

    PubMed  CAS  Google Scholar 

  • Stafford HA, Tykocinski ML, Lublin DM, Holers VM, Rosse WF, Atkinson JP, Medof ME (1988) Normal polymorphic variations and transcription of the decay accelerating factor gene in paroxysmal nocturnal hemoglobinuria cells. Proc Natl Acad Sci USA 85: 880–884

    Article  PubMed  CAS  Google Scholar 

  • Sugita Y, Uzawa M, Tomita M (1987) Isolation of decay-accelerating factor (DAF) from rabbit erythrocyte membranes. J Immunol Methods 104: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Sugita Y, Nakano Y, Tomita M (1988) Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem (Tokyo) 104: 633–637

    CAS  Google Scholar 

  • Tausk F, Fey M, Gigli I (1989) Endocytosis and shedding of the decay accelerating factor on human polymorphonuclear cells. J Immunol 143: 3295–3302

    PubMed  CAS  Google Scholar 

  • Telen MJ, Green AM (1989) The Inab phenotype: characterization of the membrane protein and complement regulatory defect. Blood 74: 437–441

    PubMed  CAS  Google Scholar 

  • Telen MJ, Hall SE, Green AM, Moulds JJ, Rosse WF (1988) Identification of human erythrocyte blood group antigens on decay-accelerating factor (DAF) and an erythrocyte phenotype negative for DAF. J Exp Med 167: 1993–1998

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Webb W, Davitz MA, Nussenzweig V (1987) Decay accelerating factor diffuses rapidly on HeLa cell surfaces. Biophys J 51: 522a

    Google Scholar 

  • Volarevic S, Burns CM, Sussman JJ, Ashwell JD (1990) Intimate association of Thy-1 and T-cell antigen receptor with the CD45 tyrosine phosphatase. Proc Natl Acad Sci USA 87: 7085–7089

    Article  PubMed  CAS  Google Scholar 

  • Walter EI, Roberts WL, Rosenberry TL, Ratnoff WD, Medof ME (1990) Structural basis for variations in the sensitivity of human decay accelerating factor to phosphatidylinositol-specific phospholipase C cleavage. J Immunol 144: 1030–1036 (published erratum: J Immunol 1990, 144: 4072)

    PubMed  CAS  Google Scholar 

  • Walthers L, Salem M, Tessel J, Laird-Fryer B, Moulds JJ (1983) The Inab phenotype: another example found. Transfusion 23: 423a

    Google Scholar 

  • Yamamoto H, Blaas P, Nicholson-Weller A, Hänsch GM (1990) Homologous species restriction of the complement-mediated killing of nucleated cells. Immunology 70: 422–426

    PubMed  CAS  Google Scholar 

  • Zalman L, Wood LM, Müller-Eberhardt HJ (1986) Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci USA 83: 6975–6979

    Article  PubMed  CAS  Google Scholar 

  • Zalman L, Wood LM, Frank MM, Müller-Eberhard HJ (1987) Deficiency of the homologous restriction factor in paroxysmal nocturnal hemoglobinuria. J. Exp. Med. 165: 572–577

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicholson-Weller, A. (1992). Decay Accelerating Factor (CD55). In: Parker, C.J. (eds) Membrane Defenses Against Attack by Complement and Perforins. Current Topics in Microbiology and Immunology, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77014-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77014-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77016-6

  • Online ISBN: 978-3-642-77014-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics