Advertisement

Zur Einführung in die Thematik des Workshops

Wissenserwerb mit kooperativen Systemen
  • Claus Möbus
Conference paper
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 292)

Zusammenfassung

Kooperative Systeme gewähren benutzerspezifische Hilfen in Stocksituationen. Das sind Situationen in denen ein Problemloser mit seinem Domänenwissen in der Problemlösung nicht mehr weiter kommt. Diese Hilfen ermöglichen die Wissenserweiterung des Benutzers, so daß er die Stocksituation auf der Basis der Hilfen und schwacher domänenunspezifischer Heuristiken überwinden kann. Wir stellen eine kognitive Wissenserwerbstheorie (ISP-DL) vor, die es erlaubt, eine Taxonomie der Stocksituationen und damit eine Taxonomie der Hilfen zu entwickeln. Es wird an Hand von vier konkreten kooperativen Systemen skizzenhaft untersucht, ob derartige Bezüge herstellbar sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson, J.R., Production Systems, Learning, and Tutoring, 437–458, in: Klahr.D., Langley, P. & Neches, R. (ed), Production System Models of Learning and Development, Cambridge, Mass.: MIT Press, 1987Google Scholar
  2. A nderson, J.R., The Architecture of Cognition. Cambridge: Harvard University Press, 1983aGoogle Scholar
  3. Anderson, J.R., Acquisition ofProof Skills in Geometry, in: Michalski, R.S., Carbonell, J.G., Mitchell, T.M., Machine Learning, Polo Alto: Tioga Press, 1983b, 191–219Google Scholar
  4. Anderson, J.R., Knowledge Compilation: The General Learning Mechanism, in: Michalski, R.S., Carbonell, J.G., Mitchell, T.M., Machine Learning, Vol. 2. Los Altos: Morgan Kaufman, 1986, 289–310Google Scholar
  5. Anderson, J.R., A Theory of the Origins of Human Knowledge, Artificial Intelligence, 1989, 40, 313–351CrossRefGoogle Scholar
  6. Anderson, J.R., Boyle, R, Corbett, A.T. & Lewis, M.W., Cognitive Modeling and Intelligent Tutoring, Artificial Intelligence, 1990, 42, 7–49CrossRefGoogle Scholar
  7. Bauer, J., Konzepte und Prototypen interaktiver Hilfesysteme, Inst. f. Informatik, Uni Stuttgart, 1988Google Scholar
  8. Boy, G., Intelligent Assistant Systems, New York: Academic Press, 1991Google Scholar
  9. Breuker, J., Duursma, C., Winkels, R. & Smith, M., Knowledge Representation in EUROHELP: Modelling operation and understanding of Computer applications for Help Systems, Progress Report of the ESPRIT Project EUROHELP, 1989Google Scholar
  10. Brown, J.S. & Vanlehn, K., Repair Theory: A Generative Theory of Bugs in Procedural Skills, Cognitive Science, 1980, 4, 379–426CrossRefGoogle Scholar
  11. Carberry, S., Plan Recognition in Natural Language Dialogue, MIT Press, 1991Google Scholar
  12. Cheng, P.W.; Carbonell, J.G.: The PERMI System: Inducing Iterative Macro-operators from Experience. AAAI-’86 Proceedings, Los Altos: Morgan Kaufman, 1986, 490 - 495Google Scholar
  13. Duncker, K., Zur Psychologie des produktiven Denkens, Berlin: Springer, 1963 (2. Aufl.)Google Scholar
  14. Elio, R., Representation of Similar Well-Learned Cognitive Procedures, Cognitive Science, 1986, 10, 41–73CrossRefGoogle Scholar
  15. Ernst, G.W. & Newell, A., GPS: A Case Study in Generality and Problem Solving, New York: Academic Press, 1969Google Scholar
  16. Hartley, J.R. & Pilkington, R., Software Tools for Supporting Learning in Intelligent On-Line Help Systems, 39–65, in: P. Ercoli & R. Lewis (eds), Artificial Intelligence Tools in Education, Amsterdam: North Holland, 1988Google Scholar
  17. Hartley, J.R. & Smith, M.J., Question Answering and Explanation Giving in Online Help Systems, 338–360, in: J.Self (ed), Artficial Intelligence and Human Learning: Intelligent Computer-Aided Instruction, London, 1988Google Scholar
  18. Houghton, R.C., Online Help Systems: A Conspectus, Commun. of the ACM, 1984, 27, 126–133CrossRefGoogle Scholar
  19. Huber, P., Jensen, K. & Shapiro, R.M., Hierarchies in Coloured Petri Nets, in: G. Rozenberg (ed), Advances in Petri Nets, Lecture Notes of Computer Science, Heidelberg: Springer, 1990Google Scholar
  20. Iba, G.A.: A Heuristic Approach to the Discovery of Macrooperators, Machine Learning, 1989, 3, 285–317Google Scholar
  21. Kass, R. & Finin, T., The Role of User Models in Cooperative Interactive Systems, International Journal of Intelligent Systems, 1989, 4, 81–112CrossRefGoogle Scholar
  22. Kearsley, G., Online Help Systems, Norwood, N.J.: Ablex Publ.Corp., 1988Google Scholar
  23. Laird, J.E., Rosenbloom, P.S & Newell, A., SOAR: An Architecture for General Intelligence, Artificial Intelligence, 1987, 33, 1–64CrossRefGoogle Scholar
  24. Lewis, C., Composition of Productions. In: Klahr, D., Langley, P., Neches, R. (eds), Production System Models of Learning and Development Cambridge: MIT Press, 1987, 329–358Google Scholar
  25. Möbus, C., Toward the Design of Adaptive Instructions and Helps for Knowledge Communication with the Problem Solving Monitor ABS YNT, in: Marik, V., Stepankova, O. & Zdrahal, Z. (eds): Artificial Intelligence in Higher Education, Lecture Notes in Computer Science No.451 (subseries LNAI), Berlin: Springer 1990, 138–145Google Scholar
  26. Möbus, C., The Relevance of Computational Models of Knowledge Acquisition for the Design of Helps in the Problem Solving Monitor ABS YNT, in: Lewis, R. & Setsuko, O. (eds), Advanced Research on Computers in Education (ARCE ‘90), Proceedings, Amsterdam: North-Holland, 1991,137–144Google Scholar
  27. Möbus, C., Schröder, O. & Thole, Hj., Runtime Modelling the Novice-Expert Shift in Programming Skills on A Rule-Schema-Case Continuum, ABSYNT-Report 12/91, paper aeeepted for presentation in the Workshop on „Intelligent Agent Modelling“ at the 12th International Joint Conference on Artificial Intelligence (IJCAI ‘91), Darling Harbour, Sydney, AustraliaGoogle Scholar
  28. Möbus, C. & Thole, H.J., Tutors, Instructions and Helps, in: Christaller, Th. (ed): Künstliche Intelligenz KIFS 1987, Informatik-Fachberichte 202, Heidelberg, Springer 1989, 336–385Google Scholar
  29. Neves, D.M., Anderson, J.R., Knowledge Compilation: Mechanisms for the Automatization of Cognitive Skills. In: Anderson, J.R. (ed), Cognitive Skills and their Acquisition, Hillsdale: Erlbaum, 1981, 57–84Google Scholar
  30. Reisig, W., Petrinetze - eine Einführung, Heidelberg: Springer, 1982zbMATHGoogle Scholar
  31. Retz-Schmidt, G., Recognizing Intentions, Plan Interactions, and Plan Failures, User Modeling and User-Adapte Interaction, (in press)Google Scholar
  32. Rosenbloom, P.; Newell, A., The Chunking of Goal Hierarchies: A Generalized Model of Practice, in: Michalski, R.S., Carbonell, J.G., Mitchell, T.M., Machine Learning, Vol. 2. Los Altos: Morgan Kaufman, 1986, 247–288Google Scholar
  33. Rosenbloom, P.; Newell, A., Learning by Chunking: A Production System Model of Practice, in: Klahr, D.; Langley, P.; Neches, R. (eds): Production System Models of Learning and Development. Cambridge: MIT Press, 1987, 221–286Google Scholar
  34. Schröder, O., A Model of the Acquisition of Rule Knowledge with Visual Help: The Operational Knowledge for a Functional, Visual Programming Language, in: Norrie, D.H., Six, H.W. (eds), Computer-Assisted Learning, ICCAL-’90, Lecture Notes in Computer Science, Vol. 438, Heidelberg: Springer 1990, 142–157Google Scholar
  35. Schröder, O., Erwerb von Regelwissen mit visuellen Hilfen: Das Semantikwissen für eine graphische funktionale vProgrammiersprache, Dissertation, FB 5 „Philosophie, Psychologie, Sportwissenschaft“, Universität Oldenburg, Verlag P. Lang (im Druck)Google Scholar
  36. VanLehn, K., Toward a Theory of Impasse-Driven Learning, 20–41, in: H. Mandl & A. Lesgold (ed), Learning Issues for Intelligent Tutoring Systems, New York: Springer, 1988Google Scholar
  37. VanLehn, K., Mind Bugs: The Origins of Procedural Misconceptions, Cambridge: MIT Press, 1990Google Scholar
  38. VanLehn, K., Two pseudo-students: Applications of machine learning to formative evaluation, in: R. Lewis, S. Otsuki (eds), Advanced Research on Computers in Education, Elsevier, IFIP, 1991a, 17–25Google Scholar
  39. VanLehn, K., Rule Acquisition Events in the Discovery of Problem-Solving Strategies, Cognitive Science, 1991b, 15, 1–47Google Scholar
  40. Wahlster, W., Biundo, S. & Hecking, M., PHI: Plan-based Help Systems, Project Description, Deutsches Zentrum für künstliche Intelligenz, Saarbrücken, Oktober, 1989Google Scholar
  41. Winkels, R., Breuker, J. & Sandberg, J., Didactic Discourse in Intelligent Helps Systems, Proceedings of Intelligent Tutoring Systems, ITS-88, Montreal, 279–285Google Scholar
  42. Winkels, R., & Sandberg, J., The EUROHELP Coach: A Progress Report, ESPRIT Project P280: A Progress Report, ESPRIT Project P280 „EUROHELP“, 1987Google Scholar
  43. Wolff, J.G., Cognitive Development as Optimisation, in: Bolc, L. (ed), Computational Models of Learning, Berün: Springer, 1987, 161–205Google Scholar
  44. Woodroffe, M.R., Plan Recognition and Intelligent Tutoring Systems, in: Self, J.(ed), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction, London, 1988, 212–225Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Claus Möbus
    • 1
  1. 1.Fachbereich Informatik, Abteilung Lehr-/LernsystemeUniversität OldenburgOldenburgGermany

Personalised recommendations