Skip to main content

Risk Analysis of Hydrological Data Using Gamma Family and Derived Distributions

  • Conference paper
Water Resources Engineering Risk Assessment

Part of the book series: NATO ASI Series ((ASIG,volume 29))

Abstract

Risk can be estimated by the probability of exceedance of XT (flow with return period T). An accurate determination of XT with its confidence intervals is important in this context. We will consider estimation of XT using several methods in the case of the Pearson type 3 and log Pearson type 3 distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashkar F. and B. Bobée (1986) Comment on: Variance of the T - Year event in the Log-Pearson Type 3 distribution. Journal of Hydrology, 84(1): 181–187.

    Article  Google Scholar 

  • Beard L.R. (1962) Statistical Methods in Hydrology. Civil Works Investigation Project CW–151, US Army Corps of Engineers, Sacramento, California. 62 p. 2 appendices.

    Google Scholar 

  • Benson M.A. (1968) Uniform flood–frequency estimating methods for federal agencies. Wat. Res. Res. 4(5): 891–908.

    Article  Google Scholar 

  • Bobée B. (1973) Sample error of T year events computed by fitting a Pearson Type 3 distribution. Wat. Res. Res. 9(5): 1264–1270.

    Article  Google Scholar 

  • Bobée B. (1975a) The Log–Pearson Type 3 distribution and its application in hydrology. Wat. Res. Res. 11(5): 681–689.

    Article  Google Scholar 

  • Bobée B. (1975b) Etude des propriétés mathématiques et statistiques des lois Pearson type 3 et log Pearson type 3. INRS–Eau, rapport scientifique no. 55, 175p.

    Google Scholar 

  • Bobée B. and F. Ashkar (1988a) The generalized method of moments applied to the log–Pearson type 3 distribution. Journal of Hydraulic Engineering, ASCE, 114(8): 899–909.

    Article  Google Scholar 

  • Bobée B. and F. Ashkar (1988b) Sundry Averages Method for estimating parameters of the Log–Pearson type 3 distribution. INRS-Eau, rapport scientifique No. 251.

    Google Scholar 

  • Bobée B. and F. Ashkar (1991) The gamma family and derived distributions applied in hydrology, 200 p. Water Resources Publications, Fort Collins, Colorado.

    Google Scholar 

  • Bobée B. and P. Boucher (1981) Calcul de la variance d’ un événement de période de retour T: cas des lois Log–Pearson type 3 et Log Gamma ajustées par la méthode des moments sur la série des valeurs observées, INRS–Eau, rapport scientifique no. 135, 17 p.

    Google Scholar 

  • Bobée B. and L. Desgroseilliers (1985) Ajustement des distributions Pearson Type 3, Gamma, Gamma Généralisée et Log Pearson. INRS–Eau, rapport scientifique no. 105, 63 p.

    Google Scholar 

  • Bobée B. and R. Robitaille (1975) Correction of bias in the estimation of the coefficient of skewness. Wat. Res. Res. 11 (6): 851–854.

    Article  Google Scholar 

  • Fisher R.A. (1921) On the mathematical foundations of theoretical statistics. Roy. Soc. of London Phil. Trans. Ser. A, 222: 309–368.

    Article  Google Scholar 

  • Hazen A. (1924) Discussion on “Theoretical Frequency Curves” by Foster. Transactions ASCE 87:174–179.

    Google Scholar 

  • Hoshi K. and U. Leeyavanija (1986) A new approach to parameter estimations of gamma type distributions. Journal of Hydrosciences and hydraulic engineering, 79–95.

    Google Scholar 

  • I.E.A. (1977) Australian rainfall and runoff flood analysis and design. Institute of engineers, Australia Camberra, A.C.T., 149 p.

    Google Scholar 

  • Kirby W. (1974) Algebraic boundedness of sample statistics. Wat. Res. Res. 10(2):220–222.

    Article  Google Scholar 

  • Landwehr J.M., Matalas N.C. and J.R. Wallis (1978) Some comparisons of flood statisties in real and log space. Wat. Res. Res. 14 (5):902–920.

    Article  Google Scholar 

  • Pearson K. (1895) Contributions of the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London Series A 186, 343–414.

    Article  Google Scholar 

  • Rao D.V. (1980) Log–Pearson type 3 distribution: method of mixed moments, ASCE, Journal of Hydraulics division, 106(6):999–1019.

    Google Scholar 

  • Rao D.V. (1983) Estimating Log–Pearson parameters by mixed moments. ASCE, Journal of Hydraulics division, 109 (8):1119–1 132.

    Google Scholar 

  • Wallis J.R., Matalas N.C. and J.R. Slack (1974) Just a moment. Wat. Res. Res., 10 (2):211–219.

    Article  Google Scholar 

  • WRC (1976) Guidelines for determining flood flow frequency. US Water Resources Council hydrology Commettee, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bobée, B., Ashkar, F., Roy, R., Perreault, L. (1991). Risk Analysis of Hydrological Data Using Gamma Family and Derived Distributions. In: Ganoulis, J. (eds) Water Resources Engineering Risk Assessment. NATO ASI Series, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76971-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76971-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76973-3

  • Online ISBN: 978-3-642-76971-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics