Observation and Analysis of Global Rainfall

  • E. Ruprecht
Conference paper
Part of the NATO ASI Series book series (volume 5)


Precipitation is a most important meteorological parameter for the whole biosphere including human life. The consequences of sufficient or inadequate rainfall are obvious comparing tropical rain forest and desert areas. The latter also can change drastically after a short rain event, vegetation grows immediately, that means the potential for a vegetation cover exists, but cannot be used due to lack of water. Over the oceans, precipitation is the source of freshwater, and therefore the main component of the forcing of the thermohaline circulation. For the atmospheric circulation precipitation stands for the amount of net energy (latent heat) which is liberated during condensation and partly consumed by the evaporation of droplets. This latent heat is for many processes in particular in the tropics the main energy source. The global mean rainfall is about 1 m per year, this corresponds to about 80 Wm -2 of latent heat. Comparing with the mean incoming solar radiation of about 240 (\(W{{m}^{{ - 2}}} = \frac{{{{S}_{0}}}}{4}\left( {1 - {{\alpha }_{p}}} \right)\), when α p is the planetary albedo) its relative importance for the energy cycle is evident. Since precipitation is very much concentrated in time and space, the energy surplus in certain regions and certain time periods can be larger more than two magnitudes of the incoming solar energy. That is the reason why the hydrological and the energy cycle are to be jointly investigated during GEWEX. Precipitation has a high spatial and temporal variability. This is due to its process of formation which depends on the following atmospheric properties:
  • sufficient water vapour, which can condensate;

  • rising moist air, that cools the water vapour below saturation point;

  • condensation nuclei, to initiate droplet formation.


Brightness Temperature Outgoing Longwave Radiation Global Precipitation Climatology Project Microwave Radiometer Rain Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkin PA (1979) The relationship between fractional coverage of high cloud and rainfall accumulation during GATE over the B-scale array. Mon Wea Rev 107: 1382–1387.CrossRefGoogle Scholar
  2. Arkin PA, Meisner BN (1987) The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon Wea Rev 115: 51–74.CrossRefGoogle Scholar
  3. Baer VE (1991) The transition from the present radar dissemination system to the NEXRAD Information Dissemination Service (NIDS). Bull Am Meteor Soc 72, 29–33.CrossRefGoogle Scholar
  4. Barrett EC (1970) The estimation of monthly rainfall from satellite data. Mon Wea Rev 98: 322–327.CrossRefGoogle Scholar
  5. Barrett EC, Martin DW (1981) The Use of Satellite Data in Rainfall Monitoring. Academic Press London, New York, 340 pp.Google Scholar
  6. Battan LJ (1973) Radar Observation of the Atmosphere. The Univ. Chicago Press Chicago and London, 324 pp.Google Scholar
  7. Baumgartner A, Reichel E (1975) The World Water Balance. R. Oldenbourg Verlag München, Wien, 179 pp.Google Scholar
  8. Bussieres N, Hogg W (1989) The objective analysis of daily rainfall by distance weighting schemes on a mesoscale grid. Atm Ocean 27: 521–541.CrossRefGoogle Scholar
  9. Dorman CE (1980) Comments on “The relationship between the amount and frequency of precipitation over the ocean”. J Appl Meteor 19: 1131–1133.CrossRefGoogle Scholar
  10. Dorman CE, Bourke RH (1978) A temperature correction of Tucker’s ocean rainfall estimation. Quart J Roy Meteor Soc 104: 765–773.CrossRefGoogle Scholar
  11. Dorman CE, Bourke RH (1979) Precipitation over the Pacific Ocean 30 ° S to 60 ° N. Mon Wea Rev 107: 896–910.CrossRefGoogle Scholar
  12. Elliott WP, Reed RK (1979) Comments on the paper “A temperature correction for Tucker’s ocean rainfall estimates”. Quart J Roy Meteor Soc 105: 1082–1083.Google Scholar
  13. Follansbee WA (1973) Estimation of average daily rainfall from satellite cloud photographs. NO M Techn Memo NESS 44, Washington DC, 39 pp.Google Scholar
  14. Geiger R (1965) Jährlicher Niederschlag. Wandkarte. Perthes Verlag Darmstadt.Google Scholar
  15. Griffith CG, Woodley WL, Grube PG, Martin DW, Stout JE, Sikdar DN (1978) Rain estimation from geosynchronous satellite imagery — visible and infrared studies. Mon Wea Rev 106: 1153–1171.CrossRefGoogle Scholar
  16. Hudlow MD, Patterson VL (1979) GATE Radar Rainfall Atlas. NOAA Special Report U.S. Department of Commerce, 155 p.Google Scholar
  17. Jäger L (1976) Monatskarten des Niederschlags für die ganze Erde. Berichte des Deutschen Wetterdienstes Offenbach, 139: 38 pp.Google Scholar
  18. Kilonsky BJ, Ramage CS (1976) A technique for estimating tropical open-ocean rainfall from satellite observations. J Appl Meteor 15: 972–975.CrossRefGoogle Scholar
  19. Lovejoy S (1982) Area-perimeter relation for rain and cloud areas. Sci 216: 185–187.CrossRefGoogle Scholar
  20. Lovejoy S, Mandelbrot BB (1985) Fractal properties of rain, and a fractal model. Tellus 37 A: 209–232.Google Scholar
  21. Medrow W, Raschke E, Ruprecht E (1983) Rainfall rates derived from NIMBUS 5 observations analysed against GATE radar rainfall. Meteor Rundschau 36: 13–20.Google Scholar
  22. Olea RA (1974) Optimal contour mapping using universal kriging. J Geophys Res 79: 695–702.CrossRefGoogle Scholar
  23. Rao MSV, Abbott III WV, Theon JS (1976) Satellite-Derived Global Oceanic Rainfall Atlas (1973 and 1974). NASA SP-410 Washington DC, 31 pp.Google Scholar
  24. Rao MSV, Theon JS (1977) New features of global climatology revealed by satellite-derived oceanic rainfall maps. Bull Americ Meteor Soc 58: 1285–1288.CrossRefGoogle Scholar
  25. Raschke E, Ruprecht E (1981) Microwave radiometry sampling problems demonstrated with Nimbus 5 rain rates versus GATE data precipitation measurements from space. Workshop Report NASA Goddard Space Flight Center, April 28-May 1, 1981. Ed.: D. Atlas and O.W. Thiele, D 84–D 93.Google Scholar
  26. Reed RK (1979) On the Relationship between the amount and frequency of precipitation over the ocean. J Appl Meteor 18: 692–696.CrossRefGoogle Scholar
  27. Reed RK (1980) Reply to C.E. Dorman (1980). J Appl Meteor 19: 1133–1134.CrossRefGoogle Scholar
  28. Reed RK, Elliott WP (1973) Precipitation at ocean weather stations in the North Pacific. J Geophys Res 78: 7087–7091.CrossRefGoogle Scholar
  29. Rudolf B, Hausschild H, ReißM, Schneider U (1991) Operational global analysis of monthly precipitation totals planned by the GPCC. Dynam of Atmospheres and Oceans 16: 17–32.CrossRefGoogle Scholar
  30. Schott G (1933) Die jährlichen Niederschlagsmengen auf dem Indischen und Stillen Ozean. Ann Hydrogr Marit Meteor 61: 1–12.Google Scholar
  31. Sevruk B (1982) Methods of correction for systematic error in point precipitation measurement for operational use. WMO Operational Hydrology Rep No. 21 (WMO-No.589), 91 pp.Google Scholar
  32. Simpson J (ed.) 1988: TRMM, a satellite mission to measure tropical rainfall. Report of the Science Steering Group NASA, 94 p.Google Scholar
  33. Stout JE, Martin DW, Sikdar DN (1979) Estimating GATE rainfall with geosynchronous satellite images. Mon Wea Rev 107: 585–598.CrossRefGoogle Scholar
  34. Sumner G (1988) Precipitation, Process and Analysis. J. Wiley and Sons Chichester, 455 pp.Google Scholar
  35. Supan A (1898) Die jährliche Niederschlagsmenge auf den Meeren. Petermanns geographische Mitteilungen 44: 179–182.Google Scholar
  36. Thiebaux HJ, Pedder MA (1987) Spatial Objective Analysis. Acad Press London, 299 pp.Google Scholar
  37. Tucker GB (1961) Precipitation over the North Atlantic Ocean. Quart J Roy Meteor Soc 87: 147–158.CrossRefGoogle Scholar
  38. Turpeinen OM, Abidi A, Belhouane W (1987) Determination of rainfall with ESOC precipitation index. Mon Wea Rev 115: 2699–2706.CrossRefGoogle Scholar
  39. Ulaby FT, Moore RK, Fung AK (1981) Microwave Remote Sensing. Vol. I: Microwave Remote Sensing. Fundamentals and Radiometry. Vol. II: Radar Remote Sensing and Surface Scattering and Emission. Vol. III: From Theory to Application. Addison Wesley Publ Comp Reading, Massachusetts. 2162 ppGoogle Scholar
  40. Wilheit TT, Chang ATC, Rao MSV, Rodgers EB, Theon JS (1977) A satellite technique for quantitatively mapping rainfall rates over the oceans. J Appl Meteor 16: 551–560.CrossRefGoogle Scholar
  41. WMO (1990) Global Precipitation Climatology Project. Implementation and data management plan. WMO/TD 367: Genf, Switzerland.Google Scholar
  42. Wüst G (1936) Oberflächensalzgehalt, Verdunstung und Niederschlag auf dem Weltmeere. Landeskundliche Forschung, Festschrift N. Krebs Eds.: H. Louis and W. Panzer, Stuttgart, 347–359.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • E. Ruprecht
    • 1
  1. 1.Institut für Meereskunde an der Universität KielKielGermany

Personalised recommendations