Demenz pp 103-111 | Cite as

Wirkmechanismus von Adenosin und Vinpocetin

  • B. B. Fredholm
Conference paper

Zusammenfassung

Sehr wahrscheinlich spielt Adenosin in verschiedenen Geweben einschließlich des Zentralnervensystems eine Rolle als autokriner/parakriner Regulator. Dies ist in Abb. 1 schematisch dargestellt. Adenosinspiegel im Gewebe steigen nach Hypoxie und/oder Ischämie an, ebenso nach langfristiger Aktivierung eines Nervs. Adenosin stammt entweder aus den Nervenzellen selbst oder wird während der Aktivität des Nervs von Effektorzellen abgegeben. Es wurde wiederholt festgestellt, daß es eher post- als präsynaptisch produziert wird [la, 2]. Es wird nicht aus Speichern abgerufen, sondern bei Bedarf freigesetzt. Eine mögliche Quelle ist das von Nerven- oder Effektorzellen während der Transmission ausgeschüttete ATP. Dies wurde wiederholt von Burnstock [1] postuliert, und es dürften kaum Zweifel daran bestehen, daß ATP zumindest in der Peripherie als wichtiger Botenstoff an der Neurotransmission beteiligt ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Burnstock G (1990) Overview. Purinergic mechanisms. Ann NY Acad Sci 603:1–17PubMedCrossRefGoogle Scholar
  2. la.
    Fredholm BB (1976) Release of adenosine-like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic alpha-receptor blockade. Acta Physiol Scand 96:122–130PubMedCrossRefGoogle Scholar
  3. 2.
    Jonzon B, Fredholm BB (1985) Relase of purines, noradrenaline, and GABA from rat hippocampal slices by field stimulation. J Neurochem 44:217–224PubMedCrossRefGoogle Scholar
  4. 3.
    Fredholm BB, Hedqvist P, Lindström K, Wennmalm M (1982) Release of nucleosides and nucleotides from the rabbit heart by sympathetic nerve stimulation. Acta Physiol Scand 116:285–295PubMedCrossRefGoogle Scholar
  5. 4.
    Fredholm BB (1982) Adenosine receptors. Med Biol 60:289–293PubMedGoogle Scholar
  6. 5.
    Fredholm BB, Jonzon B (1988) Adenosine receptors: Agonists and antagonists. In: Stefanovich V, Okyayuz-Baklouti I (eds) Adenosine in cerebral metabolism and blood flow. VSP, Utrecht, p 17Google Scholar
  7. 6.
    Fredholm BB (1982) Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiol Scand 115:283–286PubMedCrossRefGoogle Scholar
  8. 7.
    Fastbom J, Fredholm BB (1990) Effects of long-term theophylline treatment on adenosine A1-receptors in rat brain: autoradiographic evidence for increased receptor number andaltered coupling to G-proteins. Brain Res 507:195–199PubMedCrossRefGoogle Scholar
  9. 8.
    Fredholm BB, Hedqvist P (1980) Modulation of neurotransmission by purine nucleotides and nucleosides. Biochem Pharmacol 29:1635–1643PubMedCrossRefGoogle Scholar
  10. 9.
    Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9:130–134PubMedCrossRefGoogle Scholar
  11. 10.
    Fredholm BB, Jonzon B, Lindgren E, Lindström K (1982) Adenosine receptors mediating cyclic AMP production in the rat hippocampus. J Neurochem 39:165–175PubMedCrossRefGoogle Scholar
  12. 11.
    Dunwiddie TV, Fredholm BB (1989) Adenosine A1 receptors inhibit adenylate cyclase activity and neurotransmitter release and hyperpolarize pyramidal neurons in rat hippocampus. J Pharmacol Exp Ther 249:31–37PubMedGoogle Scholar
  13. 12.
    Fredholm BB, Jonzon B, Lindström K (1986) Effect of adenosine receptor agonists and other compounds on cyclic AMP accumulation in forskolin-treated hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol 332:173–178PubMedCrossRefGoogle Scholar
  14. 13.
    Fredholm BB, Sollevi A (1986) Cardiovascular effects of adenosine. Clin Physiol 6:1–21PubMedCrossRefGoogle Scholar
  15. 14.
    Edvinsson L, Fredholm BB (1983) Characterization of adenosine receptors in isolated cerebral arteries of cat. Br J Pharmacol 80:631–637PubMedGoogle Scholar
  16. 15.
    Fredholm BB, Sandberg G (1983) Inhibition by xanthine derivatives of adenosine receptor-stimulated cyclic adenosine 3′,5′-monophosphate accumulation in rat and guinea-pig thymocytes. Br J Pharmacol 80:639–644PubMedGoogle Scholar
  17. 16.
    Söderbäck U, Sollevi A, Fredholm BB (1987) The disappearance of adenosine from blood and platelet suspension in relation to the platelet cyclic AMP content. Acta Physiol Scand 129:189–194PubMedCrossRefGoogle Scholar
  18. 17.
    Zetterström T, Vernet L, Ungerstedt U, Tossmann U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett 29:111–115PubMedCrossRefGoogle Scholar
  19. 18.
    Dux E, Fastbom J, Ungerstedt U, Rudolphi K, Fredholm BB (1990) Protective effect of adenosine and a novel xanthine derivative propentophylline on the cell damage after bilateral carotid occlusion in the gerbil hippocampus. Brain Res 516:248–256PubMedCrossRefGoogle Scholar
  20. 19.
    Andiné P, Rudolphi KA, Fredholm BB, Hagberg H (1990) Effect of propentofylline (HWA 285) on extracellular purines and excitatory amino acids in CA1 of rat hippocampus during transient ischemia. Br J Pharmacol 100:814–818PubMedGoogle Scholar
  21. 20.
    Evans MC, Swan JH, Meldrum BS (1987) An adenosine analogue, 2-chloroadenosine, protects against long term development of ischemic cell loss in the rat hippocampus. Neurosci Lett 83:287–292PubMedCrossRefGoogle Scholar
  22. 21.
    Lubitz DKAJ von, Dambrosia JM, Klempski O, Redmond DJ (1988) Cyclohexyl adenosine protects against neuronal death following ischemia in the CA1 region of gerbil hippocampus. Stroke 19:1133–1139CrossRefGoogle Scholar
  23. 22.
    Rudolphi KA, Keil M, Hinze H-J (1987) Effect of theophylline on ischemically induced hippocampal damage in mongolian gerbils: A behavioural and histopathological study. J Cereb Blood Flow Metab 7:74–81PubMedCrossRefGoogle Scholar
  24. 23.
    Jonzon B, Bergquist A, Li YO, Fredholm BB (1986) Effects of adenosine and two stable adenosine analogues on blood pressure, heart rate and colonic temperature in the rat. Acta Physiol Scand 126:491–498PubMedCrossRefGoogle Scholar
  25. 24.
    Rudolphi KA, Keil M, Fastbom J, Fredholm BB (1989) Ischemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptors by caffeine treatment. Neurosci Lett 103:275–280PubMedCrossRefGoogle Scholar
  26. 25.
    Fredholm BB, Lindgren E, Lindström K, Vernet L (1983) The effect of some drugs with purported antianoxic effect on veratridine-induced purine release from isolated rat hypothalamic synaptosomes. Acta Pharmacol Toxicol 53:236–244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • B. B. Fredholm

There are no affiliations available

Personalised recommendations