GABAergic Mechanisms in Bovine Adrenal Chromaffin Cells: Their Role in the Regulation of Catecholamine Secretion

  • M. J. Oset-Gasque
  • E. Castro
  • M. P. Gonzalez
Conference paper


γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system (CNS), is also present in several peripheral tissues, where it could have a functional role in the regulation of muscle contraction or hormonal secretion (for a review see [7]).


Chromaffin Cell Adrenal Medulla GABAB Receptor Gaba Release Catecholamine Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albuquerque EX, Deshpande SS, Aravaca Y, Alkondon M, Daly JW (1986) A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor. FEBS Lett 199: 113–120PubMedCrossRefGoogle Scholar
  2. 2.
    Allan AM, Harris RA (1986) γ-Aminobutyric acid agonists and antagonists alter chloride flux across brain membranes. Mol Pharmacol 29: 497–505PubMedGoogle Scholar
  3. 3.
    Bormann J, Clapham DE (1985) γ-Aminobutryric acid receptor Channels in adrenal chromaffin cells: a patch-clamp study. Proc Natl Acad Sei USA 82: 2168–2172CrossRefGoogle Scholar
  4. 4.
    Castro E, Oset-Gasque MJ, Cañadas S, Gimenéz A, González MP (1988) GABAA sites in bovine adrenal medulla membranes. J Neurosci Res 20: 241–245PubMedCrossRefGoogle Scholar
  5. 5.
    Castro E, Oset-Gasque MJ, Gonzalez MP (1989) GABAA and GABAB receptors are fiinctionally active in the regulation of catecholamine secretion by bovine chromaffin cells.J Neurosci Res 23: 290–296PubMedCrossRefGoogle Scholar
  6. 6.
    Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34: 451–474PubMedGoogle Scholar
  7. 7.
    Erdö SL (1985) Peripheral GABAergic mechanisms. Trends Pharmacol Sei 6: 205–208CrossRefGoogle Scholar
  8. 8.
    Fernández Ramil JM, Sánchez-Prieto J, González MP (1982) Presence of glutamate decarboxylase in bovine adrenal medullary cells. Rev Esp Fisiol 38: 91–96PubMedGoogle Scholar
  9. 9.
    Fernández Ramil JM, Sánchez-Prieto J, Cañadas S, González MP (1983) GABA-T in bovine medulla cells: kinetic properties and comparisson with GABA-T from other tissues. Rev Esp Fisiol 39: 299–304PubMedGoogle Scholar
  10. 10.
    González MP, Oset-Gasque MJ, Giménez Solves A, Cañadas S (1987) Succinic semialdehyde dehydrogenase activity in bovine adrenal medulla and blood platelets: a comparative study with the brain enzyme. Comp Biochem Physiol 86B: 489–492Google Scholar
  11. 11.
    Guidotti A, Hanbauer I (1986)Participation of GABA/benzodiazepine receptor system in the adrenal chromaffin cell funetion. In: Racagni G, Donoso AO. (eds) GABA and endocrine funetion. Raven, New York, pp 165–172Google Scholar
  12. 12.
    Harrison NL, Lambert NA (1989) Modification of GABAA receptor funetion by an analog of cyciic AMP. Neurosci Lett 105: 137–142PubMedCrossRefGoogle Scholar
  13. 13.
    Kataoka Y, Gutman Y, Guidotti A, Panula P, Wroblewski J, Cosenza-Murphy D, Wu J, Costa E (1984) Intrinsic GABAergic system of adrenal chromaffin cells. Proc Natl Acad Sei USA 81: 3218–3222CrossRefGoogle Scholar
  14. 14.
    Kataoka Y, Fujimoto M, Alho H, Guidotti A, Geffard M, Kelly GD, Hanbauer I (1986) Intrinsic gamma aminobutyric acid receptors modulate the release of catecholamines from canine adrenal gland in situ. J Pharmacol Exp Ther 239: 584–590PubMedGoogle Scholar
  15. 15.
    Kataoka Y, Ohara-Imaizumi M, Veki S, Kumakura K (1988) Stimulatory action of yaminobutyric acid on catecholamine secretion from bovine adrenal chromaffin cells measured by a real-time monitoring system. J Neurochem 50: 1765–1768PubMedCrossRefGoogle Scholar
  16. 16.
    Kitayama S, Morita K, Dohi T, Tsujimoto A (1984) The nature of the stimulatory action of γ-aminobutyric acid in the isolated perfused dog adrenals. Naunyn Schmiedebergs Arch Pharmacol. 326: 106–110PubMedCrossRefGoogle Scholar
  17. 17.
    Ladona MG, Aunis D, Gandia L, García A (1987) Dihydropiridyne modulation of the chromaffin cell secretory response. J Neurochem 48: 483–490PubMedCrossRefGoogle Scholar
  18. 18.
    Leboulenger F, Leroux P, Tonon MC, Coy DH, Vaudry H, Pelletier G (1983) Coexistence of vasoactive intestinal peptide and enkephalins in the adrenal chromaffin granules of the frog. Neurosci Lett 37: 221–225PubMedCrossRefGoogle Scholar
  19. 19.
    Linnoila RI, Diaugustine RP, Hervonen A, Miller RJ (1980) Distribution of (met5 and (leu5)-enkephalin, vasoactive intestinal polypeptide and substance P-like immunoreactivities in human adrenal glands. Neuroscience 5: 2247–2259PubMedCrossRefGoogle Scholar
  20. 20.
    Livett BG, Marley PD (1986) Effects of opioid peptides and morphine on histamineinduced catecholamine secretion from cultured bovine adrenal medulla chromaffin cells. Br J Pharmacol 89: 327–334PubMedGoogle Scholar
  21. 21.
    Lundberg JM, Hamberger B, Schulyberg M, Hockfeit T, Granberg PO, Efendie S, Terenius L, Goldtein M, Luft R (1979) Enkephalin- and somatostatin-like immunoreactivities in human adrenal medulla and pheochromocytoma. Proc Natl Acad Sei USA 76: 4079–4083CrossRefGoogle Scholar
  22. 22.
    Majane EA, Alho H, Kataoka Y, Lee CH, Yang HYT (1985) Neuropeptide Y in bovine adrenal glands: distribution and characterization. Endocrinology 117:1162–1168PubMedCrossRefGoogle Scholar
  23. 23.
    Marley PD, Bunn SJ, Wan DCC, Allen AM, Mendelsohn FAO (1989) Localization of angiotensin II binding sites in the bovine adrenal medulla using a labelled specific adrenal antagonist. Neuroscience 28: 777–787PubMedCrossRefGoogle Scholar
  24. 24.
    Martmez P, Giménez A, Castro E, Oset-Gasque MJ, Gonzalez MP (1987) GABA binding in bovine adrenal medulla membranes is sensitive to baclofen. Comp Biochem Physiol 88C: 155–157Google Scholar
  25. 25.
    Nowak AM, Young AB, McDonald RL (1982) GABA and bicuculline actions on mouse spinal cord and cortical neurons in cell culture. Brain Res 244: 155–164PubMedCrossRefGoogle Scholar
  26. 26.
    Okazaki M, Yanagihara N, Izumi F, Nakajima Y, Kuroiwa A (1989) Carbacholinduced cosecretion of immunoreactive atrial natriuretic peptides with catecholamines from cultured bovine adrenal medullary cells. J Neurochem 52: 222–228PubMedCrossRefGoogle Scholar
  27. 27.
    Oset-Gasque MJ, Cañadas Correas S, Massó-Córdoba JM, Gonzalez MP (1985) Uptake of GABA by bovine adrenal medulla slices. Naunyn Schmeidebergs Arch Pharmacol 329: 372–375CrossRefGoogle Scholar
  28. 28.
    Oset-Gasque MJ, Aunis D (1989) γ-Aminobutyric acid uptake in bovine chromaffin cells in culture. Biochem Pharmacol 38: 2227–2232PubMedCrossRefGoogle Scholar
  29. 29.
    Oset-Gasque MJ, Castro E, González MP (1990) Mechanisms of [3H]γ-aminobutyric acid release by chromaffin cells in primary culture. J Neurosci Res 26: 181–187PubMedCrossRefGoogle Scholar
  30. 30.
    Peters JA, Lambert JJ, Cottrell GA (1989) An electrophysiological investigation of the characteristics and function of GABAA receptors on bovine adrenomedullary chromaffin cells. Eur J Physiol 415: 95–103CrossRefGoogle Scholar
  31. 31.
    Saito H, Saito S, Ohuchi T, Oka M, Sano T, Hosoi E (1984) Co-storage and cosecretion of somatostatin and catecholamines in bovine adrenal medulla. Neurosci Lett 52: 43–47PubMedCrossRefGoogle Scholar
  32. 32.
    Sangiah S, Borowitz JL, Yim GKW (1974) Action of GABA, picrotoxin and bicuculline on adrenal medulla. Eur J Pharmacol 27: 130–135PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka T, Yokohama H, Negishi M, Hayashi H, Ito S, Hayaishi O (1987) Pertussis toxin facilitates secretagogue-induced catecholamine release from cultured bovine adrenal chromaffin cells. Biochem Biophys Res Comm 144: 907–914PubMedCrossRefGoogle Scholar
  34. 34.
    Thampy KG, Barbes EM Jr (1984) γ-Aminobutyric acid-gated chloride Channels in cultured cerebral neurons. J Biol Chem 259: 1753–1757PubMedGoogle Scholar
  35. 35.
    Wagoner PK, Pallota BS (1988) Modulation of acetycholine receptor desensitization by forskolin is independent of camp. Science 240: 1655–1657PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • M. J. Oset-Gasque
  • E. Castro
  • M. P. Gonzalez

There are no affiliations available

Personalised recommendations