Skip to main content

Drug Entry Into the Brain and Its Pharmacologic Manipulation

  • Chapter
Physiology and Pharmacology of the Blood-Brain Barrier

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 103))

Abstract

During recent years much progress has been made in pharmacology which has resulted in the introduction of several important new drugs into clinical medicine. Even greater progress has been made in the arena of biopharmaceutical technology, with the development of a number of peptides and genetically engineered agents which interact, with high specificity, with intra- and/or extracellular targets at a molecular level. It is probable that many of these new peptide and protein therapeutics will undergo clinical assessment during this decade. For the vast majority of drugs, peptides, and proteins the relation between dose and effect is critical. Most therapeutic agents produce their required pharmacologic response by interfering with some specific aspect of cell function or structure in a concentration-dependent and reversible manner. To obtain a required pharmacologic response, the administration, absorption, and transport of a threshold amount of drug to the target is essential. Further, this often must occur at the correct time for a pharmacologic effect to be elicited and maintenance of drug at the target may be required for a specific time to achieve a clinically valuable response. Thus, for an optimal pharmacologic response, control of drug input and time-dependent knowledge of drug disappearance, due to distribution, metabolism, and excretion processes, is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAD:

Amino acid decarboxylase

ADTN:

2-Amino-6,7-dihydroxy-tetrahydronaphthalene

AIDS:

Acquired immunodeficiency syndrome

AZT:

Azidothymidine

BChE:

Butyrylcholinesterase

CDS:

Chemical delivery system

COMT:

Catechol-O-methyl-transferase

DOPA:

3,4-Dihydroxyphenylalanine Enk Enkephalin

GABA:

γ-Aminobutyric acid

5-HT:

5-Hydroxytryptamine

5-HTP:

5-Hydroxytryptophan

IGF:

Insulin like growth factor

MAO:

Monoamine oxidase

MCPP:

m-Chlorophenylpiperazine

MPP+ :

1-Methyl-4 phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NAM:

dl-2-amino-7-bis-[(2-chloroethyl) amino]-1,2,3,4- tetra-hydro-2-napthoic acid

PA :

Permeability — surface area (product)

TRH:

Thyrotrophin releasing hormone

References

  • Ali-Osman F, Greig NH, John V, Lieberburg IM, Rapoport SI (1991) Activity of tertiary butyl chlorambucil ester against 2-chloroethylnitrosourea-resistant human malignant glioma cell lines. Proc Am Assoc Cancer Res 32:318

    Google Scholar 

  • Anderson WR, Simpkins JW, Woodard PA, Winwood D, Stern WC, Bodor N (1987) Anxiolytic activity of a brain delivery system for GAB A. Psycho- pharmacology (Berlin) 92:157–163

    CAS  Google Scholar 

  • Atack JR, Yu QS, Soncrant TT, Brossi A, Rapoport SI (1989) Comparative inhibitory effects of various physostigmine analogs against acetyl- and butyrylcholinesterases. J Pharmacol Exp Ther 249:194–202

    CAS  PubMed  Google Scholar 

  • Augustinsson KB (1961) Multiple forms of esterase in vertebrate blood plasma. Ann NY Acad Sci 94:844–860

    Article  CAS  Google Scholar 

  • Banks WA, Kastin AJ (1990) Peptide transport systems for opiates across the blood-brain barrier. Am J Physiol 259:E1-E10

    CAS  PubMed  Google Scholar 

  • Barachi J, Marquez VE, Driscoll JS, Ford H, Mitsuya H, Shirasaka T, Aoki S, Kelly JA (1991) Potential anti-AIDS drugs. Lipophilic, adenosine deaminase-activated prodrugs. J Med Chem 34:1647–1655

    Article  Google Scholar 

  • Bartholini G, Pletscher A (1969) Effects of various decarboxylase inhibitors on the cerebral metabolism of dihydroxyphenylalanine. J Pharm Pharmacol 21:323–324

    Article  CAS  PubMed  Google Scholar 

  • Becker RE, Colliver J, Elble R, Feldman E, Giacobini E, Kumar V, Markwell S, Moriearty P, Parks R, Shillant SD, Unni L, Vicari S, Wamack C, Zee RF (1990) Effects of metrifonate, a long-acting cholinesterase inhibitor, in Alzheimer’s disease. Drug Dev Res 19:424–434

    Article  Google Scholar 

  • Bertler A, Falck B, Owman C, Rosengren E (1966) Localization of monoaminergic blood-brain barrier mechanisms. Pharmacol Rev 18:369–385

    CAS  PubMed  Google Scholar 

  • Birkmayer W, Riederer P, Ambrozi L (1977) Implications of combined treatment with ‘Madopar’ and L-deprenyl in Parkinson’s disease. Lancet 2:439–443

    Article  Google Scholar 

  • Boddy AV, Aarons L, Petrak K (1989) Efficiency of drug targeting: steady-state considerations using a three-compartmental model. Pharm Res 6:367–372

    Article  CAS  PubMed  Google Scholar 

  • Boddy AV, Zhang K, Lepage F, Tombret F, Slatter JG, Baillie TA, Levy RH (1991) In vitro and in vivo investigations of dihydropyridine-based chemical delivery systems for anticonvulsants. Pharm Res 8:690–697

    Article  CAS  PubMed  Google Scholar 

  • Bodor N (1987) Redox delivery system for targeting drugs to brain. Ann NY Acad Sci 507:289–306

    Article  CAS  PubMed  Google Scholar 

  • Bodor N, Brewster M (1982) Problems of drug delivery to the brain. Pharmacol, Ther 19:337–386

    Article  CAS  Google Scholar 

  • Bodor N, Kaminski JJ (1987) Prodrugs and site-specific chemical delivery systems. Annu Rep Med Chem 22:303–313

    Article  CAS  Google Scholar 

  • Bodor N, Venkatraghavan V, Winwood D, Estes K, Brewster M (1989) Improved delivery through biological membranes. XLI. Brain enhanced delivery of chlorambucil. Int J Pharm 53:195–208

    Article  CAS  Google Scholar 

  • Boyer PD (1971) The enzymes, vol 5. Academic, New York

    Google Scholar 

  • Brem H (1990) Controlled delivery to the brain. In: Gregoriadis G (ed) Targeting of drugs. Plenum, New York, pp 155–174

    Google Scholar 

  • Brightman MW (1989) The anatomic basis of the blood-brain barrier. In: Neu welt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 1, Basic science aspects. Plenum, New York, pp 53–83

    Chapter  Google Scholar 

  • Brossi A (1990) Bioactive alkaloids. IV. Results of recent investigations with colchicine and physostigmine. J Med Chem 33:2311–2319

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard H (1987) Design of bioreductive derivatives and the utility of the double prodrug concept. In: Roche EB (ed) Bioreversible carriers in prodrug design, theory and application. Pergamon, New York, pp 13–94

    Google Scholar 

  • Bundgaard H, Johansen M (1980) Prodrugs as delivery systems. XV. Bioreversible derivitization of phenytoin, acetazolomide, chlorzoazone and various other NH- acidic compounds by N-aminomethylation to effect enhances disolution rates. Int J Pharm 7:129–136

    Article  CAS  Google Scholar 

  • Bundgaard H, Johansen M (1982a) Prodrugs as delivery systems. XIX. Bioreversible derivitization of aromatic amines by formation of N-Mannieh bases with succinimide. Int J Pharm 8:183–192

    Article  Google Scholar 

  • Bundgaard H, Johansen M (1982b) Prodrugs as drug delivery systems. XX. Oxazolidines as potential pro-drug types of ß-aminoalcohols, aldehydes and ketones. Int J Pharm 10:165–175

    Article  CAS  Google Scholar 

  • Burr A, Bundgaard H, Falch E (1985) Prodrugs of 5-fluorouracil. IV. Hydrolysis kinetics, bioactivation and physicochemical properities of various N- acyloxymethyl derivitives of 5-fluorouracil. Int J Pharm 24:43–60

    Article  Google Scholar 

  • Cefalu WT, Pardridge WM (1985) Restrictive transport of a lipid-soluble peptide (cyclosporin) through the blood-brain barrier. J Neurochem 45:1954–1956

    Article  CAS  PubMed  Google Scholar 

  • Chong CW (1970) Inhibition of human plasma esterases by 2’-dimethylaminoethyl- 2,2-diphenylvalerate.HCl (SK&F525A). Thesis, Temple University, Philadelphia Cornford EM (1984) Blood-brain barrier permiability to anticonvulsant drugs. In: Levy RH, Pitlick WH, Echelbaum M, Meijer J (eds) Metabolism of antiepileptie drugs. Raven, New York, pp 129–142

    Google Scholar 

  • Crevelling C, Daly J, Tokuyama T (1969) Labile lipophilic derivative of norepinephrine capable of crossing the blood-brain barrier. Experientia 25: 26–27

    Article  Google Scholar 

  • Croucher MJ, Meldrum BS, Krogsgaard-Larsen P (1983) Anticonvulsant activity of GABA uptake inhibitors and their prodrugs following central or systemic administration. Eur J Pharmacol 89:217–228

    Article  CAS  PubMed  Google Scholar 

  • Daly JW, Creveling CR, Witkop B (1966) The chemorelease of norepinephrine from mouse hearts. Structure-activity relationships. I. Sympathomimetic and related amines. J Med Chem 9:273–280

    Article  CAS  PubMed  Google Scholar 

  • Davson H (1967) Physiology of the cerebrospinal fluid. Churchill Livingstone, London

    Google Scholar 

  • Davson H (1989) History of the blood-brain barrier concept. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 1, Basic science aspects. Plenum, New York, pp 27–52

    Chapter  Google Scholar 

  • Davson H, Welch K, Segal L (1987) The blood-brain barrier. In: The physiology and pathophysiology of the cerebrospinal fluid. Livingstone, London, pp 65–103

    Google Scholar 

  • De Sarno P, Pomponi M, Giacobini E, Tang XC, Williams E (1989) The effect of heptyl-physostigmine, a new Cholinesterase inhibitor, on the central cholinergic system of the rat. Neurochem Res 14:971–977

    Article  PubMed  Google Scholar 

  • Dietzel K, Keuth V, Estes KS, Brewster ME, Clemmons RM, Visteile R, Bodor N, Derendorf H (1990) A redox-based system that enhances delivery of estradiol to the brain: pharmacokinetic evaluation in the dog. Pharm Res 7:879–883

    Article  CAS  PubMed  Google Scholar 

  • Duričić BM, Mršulja BB (1988) Transport and barrier systems of the cerebral vasculature; enzymatic aspects. In: Rakć L, Begley DJ, Davson H, Zloković BV (eds) Peptides and amino acid transport mechanisms in the central nervous system. Stockton, New York, pp 269–278

    Google Scholar 

  • Falch E, Krogsgaard-Larsen P, Christensen A (1981) Esters of isoguvacine as potential prodrugs. J Med Chem 24:285–289

    Article  CAS  PubMed  Google Scholar 

  • Fekete I, Griffith OW, Schlageter KE, Bigner DD, Friedman HS, Groothius DR (1990) Rate of buthionine sulfoximine entry into brain and xenotransplanted human gliomas. Cancer Res 50:1251–1256

    CAS  PubMed  Google Scholar 

  • Fenstermacher JD, Cowles AL (1977) Theoretic limitations of intracarotid infusions in brain tumor chemotherapy. Cancer Treat Rep 61:519–526

    CAS  PubMed  Google Scholar 

  • Fenstermacher JD, Rapoport SI (1984) Blood-brain barrier. In: Renkin EM, Michel CC (eds) Handbook of Physiology, The cerebrovascular system IV: Microcirculation, part 2, American Physiological Society, Bethesda, pp 969–1001

    Google Scholar 

  • Finklestein J, Shern J, Chabner B (1970) Pharmacologic studies of tritiated cytosine arabinoside (NSC 63878) in children. Cancer Chemother Rep 54:35–41

    CAS  PubMed  Google Scholar 

  • Frank HJL, Pardridge WM, Morris WM, Rosenfeld RG, Choi TB (1986) Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels. Diabetes 35:654–658

    Article  CAS  PubMed  Google Scholar 

  • Freedman F, Johnson J (1969) Equilbrium and kinetic properties of the Evans blue albumin system. Am J Physiol 216:675–681

    CAS  PubMed  Google Scholar 

  • Freedman SB, Iversen LL, Rugarli PL, Harley EA (1991) Heptyl-physostigmine: a potent inhibitor of acetylcholinesterase with long duration of activity. 2nd International Springfield symposium on advances in Alzheimer’s disease, Springfield, 111, p 19

    Google Scholar 

  • Genka S, Shetty HU, Stahle PL, John V, Lieberburg IM, Ali-Osman F, Rapoport SI, Greig NH (1991a) Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil. Clin Exp Metastasis (in Press)

    Google Scholar 

  • Genka S, Greig NH, Nariai T, Deorge J, Noronha JG, Schmall B, Rapoport SI (1991b) Brain tumor imaging with radiolabeled fatty acids in rats. Proc Am Assoc Cancer Res 32:73

    Google Scholar 

  • Glick D (1941) Some additional observations on the specificity of cholinesterases. J Biol Chem 137:357–362

    CAS  Google Scholar 

  • Gomori G (1941) The distribution of phosphatase in normal organs and tissues. J Cell Comp Physiol 17:71–83

    Article  CAS  Google Scholar 

  • Greig NH (1984) Chemotherapy of brain metastases: current status. Cancer Treat Rev 11:157–186

    Article  CAS  PubMed  Google Scholar 

  • Greig NH (1987) Optimizing drug delivery to brain tumors. Cancer Treat Rev 14:1–28

    Article  CAS  PubMed  Google Scholar 

  • Greig NH (1989a) Drug delivery to the brain by blood-brain barrier circumvention and drug modification. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its modification, vol 1, Basic science studies. Plenum, New York, pp 311–367

    Chapter  Google Scholar 

  • Greig NH (1989b) Brain tumors and the blood-tumor barrier. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol. 2, Clinical studies. Plenum, New York, pp 77–106

    Google Scholar 

  • Greig NH, Momma S, Sweeney DJ, Smith QR, Rapoport SI (1987a) Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid carrier system. Cancer Res 47:1571–1576

    CAS  PubMed  Google Scholar 

  • Greig NH, Sweeney DJ, Rapoport SI (1987b) Melphalan concentration dependent plasma protein binding in healthy humans and rats. Eur J Clin Pharmacol 32:179–185

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Sweeny DJ, Rapoport SI (1988) Comparative brain and plasma pharmacokinetics and anticancer activities of chlorambucil and melphalan in the rat. Cancer Chemother Pharmacol 21:1–8

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Soncrant TT, Shetty HU, Momma S, Smith QR, Rapoport SI (1990a) Brain uptakes and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother Pharmacol 26:263–268

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Genka S, Rapoport SI (1990b) Delivery of vital drugs to the brain for the treatment of brain tumors. J Controlled Release 11:61–78

    Article  CAS  Google Scholar 

  • Greig NH, Genka S, Daly EM, Sweeney DJ, Rapoport SI (1990c) Physicochemical and pharmacokinetic parameters of seven lipophilic chlorambucil esters designed for brain penetration. Cancer Chemother Pharmacol 25:311–319

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Daly EM, Sweeney DJ, Rapoport SI (1990d) Pharmacokinetics of chlorambucil-tertiary butyl ester, a lipophilic chlorambucil derivative that achieves and maintains high concentrations in brain. Cancer Chemother Pharmacol 25:311–319

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Stahle PL, Shetty HU, Genka S, John V, Rapoport SI (1990e) High performance liquid chromatography analysis of chlorambucil-tertiary butyl ester and its active metabolites, chlorambucil and phenylacetic mustard, in plasma and tissue samples. J Chromatogr 534:279–286

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Wozniak KM, Tolliver T, Holloway HW, Freo U, Rapoport SI, Soncrant TT (1991a) Age-dependent pharmacokinetics of m-chlorophenylpiperazine in brain and plasma of Fischer-344 rats. Psychopharmacology (Berlin) (in Press)

    Google Scholar 

  • Greig NH, Ali-Osman F, Genka S, Shetty HU, John V, Stahle PL, Tung J, Soncrant TRT, Lieberburg IM, Rapoport SI (1991b) Chlorambucil-tertiary butyl ester, an agent designed for brain tumor therapy: pharmacokinetics and activity in rats. Proc Am Assoc Cancer Res 32:333

    Google Scholar 

  • Greig NH, Nariai T, Noronha JG, Schmall B, Larson DM, Soncrant TT, Rapoport SI (1991c) Brain tumor imaging in rats using positron emitting fatty acid radionuclide dl-erythro-9,10-[18F]difluoropalmitate. Clin Exp Metastasis 9: 77–84

    Article  Google Scholar 

  • Haines DR, Fuller RW, Ahmad S, Vistica DT, Marquez VE (1987) Selective cytotoxicity of a system L specific amino acid nitrogen mustard. J Med Chem 30:542–547

    Article  CAS  PubMed  Google Scholar 

  • Hansch C (1972) Strategy in drug design. Cancer Chemother. Rep 56:433–441

    CAS  PubMed  Google Scholar 

  • Harbaugh RE, Saunders RL, Reeder R (1988) Use of implantable pumps for central nervous system drug infusions to treat neurological disease. Neurosurgery 23:693–700

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T (1987) Prodrug and drug delivery; an overview. In: Roche EB (ed) Bioreversible carriers in drug design, theory and application. Pergamon, Oxford, pp 1–12

    Google Scholar 

  • Higuchi T, Stella V (1975) Prodrugs as novel drug delivery systems. American Chemical Society, Washington (American Chemical Society symposium series 14)

    Book  Google Scholar 

  • Ho D, Frie E (1971) Clinical pharmacology of 1-β-arabinofuransylcytosine. Clin Pharmacol Ther 12:944–954

    CAS  PubMed  Google Scholar 

  • Hochberg FH, Pruitt AA, Beck DO, DeBrun G, Davis K (1985) The rationale and methodology for intra-arterial chemotherapy with BCNU as treatment for glioblastoma. J Neurosurg 63:876–880

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth J, Davson H (1973) Transport of sulfate in the rabbit’s brain. J Neurobiol 4:389–396

    Article  CAS  PubMed  Google Scholar 

  • Horn A, Grol C, Dijkstra D (1978a) Facile syntheses of potent dopaminergic agonists and their effects on neurotransmitter release. J Med Chem 21:825–828

    Article  CAS  PubMed  Google Scholar 

  • Horn A, DeKaste D, Dijkstra D (1978b) A new dopaminergic prodrug. Nature 276:405–407

    Article  CAS  PubMed  Google Scholar 

  • Horn A, Kelly P, Westerink B (1979) A prodrug of ADTN: selectivity of dopaminergic action and brain levels of ADTN. Eur J Pharmacol 60:95–99

    Article  CAS  PubMed  Google Scholar 

  • Huber KR, Rosenfeld H, Roberts J (1988) Uptake of glutamine antimetabolites 6-diazo-5-oxo-L-norleucine (DON) and acivicin in sensitive and resistant tumor cell lines. Int J Cancer 41:752–755

    Article  CAS  PubMed  Google Scholar 

  • Hunt CA, MacGregor RD, Siegel RA (1986) Engineering targeted in vivo drug delivery. 1. The physiological and physicochemical principles governing opportunities and limitations. Pharm Res 3:333–344

    Article  CAS  Google Scholar 

  • Jacob JN, Shashoua VE, Campbell A, Baldessarini RJ (1985) γ-Aminobutyric acid esters. 2. Synthesis, brain uptake, and pharmacological properties of lipid esters of γ-aminobutyric acid. J Med Chem 28:106–110

    Article  CAS  PubMed  Google Scholar 

  • Jansen ABA, Russell TJ (1965) Some novel penicillin derivatives. J Chem Soc Ularch 1965:2127–2132

    Article  Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–164

    Article  CAS  PubMed  Google Scholar 

  • Johansen M, Bundgaard H (1979) Prodrugs as delivery systems. VI. Kinetic and mechanisms of the decomposition of N-hydroxymethylated amides and imides in aqueous solution and assessment of their stability as possible pro-drugs. Arch Pharm Chem Sci Ed 7:175–192

    CAS  Google Scholar 

  • Johanson C (1989) Ontogeny and phylogeny of the blood-brain barrier. In: Neuwelt EA (ed) Implications of the blood-brain barrier and its manipulation, vol 1, Basic science aspects. Plenum, New York, pp 157–198

    Chapter  Google Scholar 

  • Jones DR, Hall SD, Jackson EK, Branch RA, Wilkinson GR (1988) Brain uptake of benzodiazepines: effects of lipophilicity and plasma protein binding. J Pharmacol Exp Ther 245:816–822

    CAS  PubMed  Google Scholar 

  • Jusko W, Gretch M (1976) Plasma and protein binding of drugs in pharmacokinetics. Druetab Rev 5:43–140

    CAS  Google Scholar 

  • Kalaria R, Mitchell M, Harik SI (1987) Correlation of l-methyl-4-phenyl-1,2,36- tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc Natl Acad Sci USA 84:3521–3525

    Article  CAS  PubMed  Google Scholar 

  • Kapetanović IM, Sweeney DJ, Rapoport SI (1982a) Phenobarbitol pharmacokinetics in rat as a function of age. Drug Metab Dispos 10:586–589

    PubMed  Google Scholar 

  • Kapetanović IM, Sweeney DJ, Rapoport SI (1982b) Age-effects of haloperidol pharmacokinetics in male, Fischer-344 rats. J Pharm Exp Ther 221:434–438

    Google Scholar 

  • Karnovsky MJ (1967) The ultrastrucural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35:213–236

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Phamacol Rev 33:17–53

    CAS  Google Scholar 

  • Krogsgaard-Larsen P, Christensen A (1979) GAB A agonists. Synthesis and structure-activity studies on analogues of isoguvacine and THIP. Eur J Med Chem 14:157–164

    CAS  Google Scholar 

  • Krogsgaard-Larsen P, Falch E, Mikkelsen H, Jacobsen P (1982) Development of structural analogs and prodrugs of GABA agonists with desirable pharmacokinetic properties. In: Bundgaard H, Hansen AB, Kofod H (eds) Optimization of drug delivery. Munksgaard, Copenhagen, pp 225–234 (Alfred Benzon Symposium 17)

    Google Scholar 

  • Leo A, Hansch C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71:525–616

    Article  CAS  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    Article  CAS  PubMed  Google Scholar 

  • Levine R, Fredericks W, Rapoport SI (1982) Entry of bilirubin into the brain due to opening of the blood-brain barrier. Pediatrics 69:255–259

    CAS  PubMed  Google Scholar 

  • Levitan H, Ziylan Z, Smith QR, Takasato Y, Rapoport SI (1984) Brain uptake of a food dye, erythrosin B, prevented by plasma protein binding. Brain Res 322:131–134

    Article  CAS  PubMed  Google Scholar 

  • MacKichan J (1984) Pharmacokinetic consequences of drug displacement from blood and tissue proteins. J Pharmacokinet 9:32–41

    Article  CAS  Google Scholar 

  • Nariai T, DeGeorge JJ, Greig NH, Rapoport SI (1991a) In vivo incorporation of [9,10–3H]palmitate into a rat metastatic brain tumor model. J Neurosurg 74:643–649

    Article  CAS  PubMed  Google Scholar 

  • Nariai T, DeGeorge J, Greig NH, Genka S, Rapoport SI (1991b) Use of intravenously injected radiolabeled fatty acids for in vivo brain tumor imaging. Clin Exp Metastasis (in Press)

    Google Scholar 

  • Neuwelt EA, Dahlborg SA (1989) Blood-brain barrier in the treatment of brain tumors: clinical implications. In: Neuwelt EA (ed) Implications of the blood- brain barrier and its manipulation, vol 2, Clinical Studies. Plenum, New York, pp 195–262

    Chapter  Google Scholar 

  • Nordgren I, Bergstrom M, Holmstedt B, Sandoz M (1978) Transformation and action of metrifonate. Arch Toxicol 41:31–41

    Article  CAS  PubMed  Google Scholar 

  • Noronha JG, Bell JM, Rapoport SI (1990) Quantitative brain autoradiography of [9,10–3H]palmitic acid incorporation into brain lipids. J Neurosci Res 26: 196–208

    Article  CAS  PubMed  Google Scholar 

  • Notari E (1981) Prodrug design. Pharmacol Ther 14:25–53

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (1985) Strategies for delivery of drugs through the blood-brain barrier. Annu Rep Med Chem 20:305–313

    Article  CAS  Google Scholar 

  • Pardridge WM (1988) Recent advances in blood-brain barrier transport. Ann Neurol Pharmacol Toxicol 28:25–39

    Article  CAS  Google Scholar 

  • Pardridge WM, Eisenberg J, Jank J (1985) Human blood-brain barrier insulin receptor. J Neurochem 44:1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Eisenberg J, Yang J (1987) Human blood-brain barrier transferrin receptor. J Neurochem 49:1394–1401

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Triguero D, Buciak JB (1989) Transport of histone through the blood-brain barrier. J Pharmacol Exp Ther 251:821–826

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Triguero D, Buciak JB (1990) B-endorphin chimeric peptides: transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain. Endocrinology 126:977–984

    Article  CAS  PubMed  Google Scholar 

  • Pomponi M, Giacobini E, Brufani M (1990) Present state and future development of the therapy for Alzheimer’s disease. Aging 2:125–153

    CAS  PubMed  Google Scholar 

  • Raffaele KC, Berardi A, Asthana S, Morris PP, Haxby JV, Soncrant TT (1991) Effects of long-term continuous infusion of the muscarinic cholinergic agonist arecoline on verbal memory in dementia of the Alzheimer’s type. Psychopharm Bull 27:315–319

    CAS  Google Scholar 

  • Raiteri R, Marietta G, Sclofaro C, Sinicco A (1989) Adenosine deaminase and HIV infection. Med Sci Res 17:187–188

    Google Scholar 

  • Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven, New York

    Google Scholar 

  • Rapoport SI, Levitan H (1974) Neurotoxicity of X-ray contrast media: relation to lipid solubility and blood-brain barrier permeability. AJR 122:186–193

    CAS  Google Scholar 

  • Reese T, Karnovsky M (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  Google Scholar 

  • Ricardi R, Bleyer WA, Poplack DG (1983) Enhancement of delivery of antineoplastic drugs into cerebrospinal fluid. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, vol 2. Plenum, New York, pp 453–466

    Google Scholar 

  • Rinne V, Sonninen V, Siirtola T (1973) Plasma concentration of levodopa in patients with Parkinson’s disease. Response to administration of levodopa alone or combined with a decarboxylase inhibitor and clinical correlations. Eur Neurol 10:301–310

    Article  CAS  PubMed  Google Scholar 

  • Robinson PJ, Rapoport SI (1986) Kinetics of protein binding determine rates of uptake of drugs by brain. Am J Physiol 251:R1212-R1220

    CAS  PubMed  Google Scholar 

  • Robinson PJ, Rapoport SI (1990) Model for drug uptake by brain tumors: effects öf osmotic treatment and of diffusion in brain. J Cer Blood Flow Metab 10: 153–161

    Article  CAS  Google Scholar 

  • Rowland M (1984) Protein binding and clearance. Clin Pharmacokinet 9:10–17

    Article  CAS  PubMed  Google Scholar 

  • Scholtan W (1968) Die hydrophobe Bindung der Pharmaka an Humanalbumin und Ribonucleinsäure. Arzheimittel forschung 18:505–517

    CAS  Google Scholar 

  • Schulman DS, Kaufman JJ, Eisenstein MM, Rapoport SI (1984) Blood and brain uptake of [14C]morphine. Anesthesiology 61:540–543

    Article  CAS  PubMed  Google Scholar 

  • Segal MD, Zloković BV (1990) The blood-brain barrier amino acids and peptides. Kluwer, Lancaster

    Google Scholar 

  • Shetty HU, Daly EM, Greig NH, Rapoport SI, Soncrant TT (1991) An automatic reaction control chemical ionization technique in ion trap detector for quantitative plasma profiling of arecoline in treated Alzheimer’s patients. J Am Soc Mass Spectrom 2:168–173

    Article  CAS  Google Scholar 

  • Sinkula A, Yalkowsky S (1975) Rationale for design of biologically reversible drug derivatives: prodrugs J Pharm Sci 64:181–210

    CAS  Google Scholar 

  • Smith QR, Takasato Y (1986) Kinetics of amino acid transport at the blood-brain barrier studied using an in situ brain perfusion technique. Ann NY Acad Sci 481:186–201

    Article  CAS  PubMed  Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Smith QR, Aoyagi M, Rapoport SI (1989) Structural specificity of the brain capillary neutral amino acid transporter. Soc Neurosci Abstr 15:1025

    Google Scholar 

  • Soncrant TT, Holloway HW, Greig NH, Rapoport SI (1989a) Regional brain metabolic responsivity to the muscarinic cholinergic agonist arecoline is similar in young and aged Fischer-344 rats. Brain Res 487:255–266

    Article  CAS  PubMed  Google Scholar 

  • Soncrant TT, Morris PP, Raffaele KC, Shetty HU, Greig NH, Haxby JV, Daly EM, Rapoport SI (1989b) Rigerous evaluation of chloinergic enhancement therapy in Alzheimer’s disease. Abstr Am Coll Neuropsychopharmacol 146

    Google Scholar 

  • Soncrant TT, Raffaele KC, Asthana S, Berardi A, Morris PP, Haxby JV (1991) Memory improvement without toxicity during chronic low dose intravenous arecoline in Alheimer’s disease. Neurology (in press)

    Google Scholar 

  • Spector R (1986) Nucleoside and vitamin homeostasis in the mammalian central nervous system. Ann NY Acad Sci 481:221–230

    Article  CAS  PubMed  Google Scholar 

  • Spector R (1987) Ceftriaxone transport through the blood-brain barrier. J Infect Dis 156:209–211

    Article  CAS  PubMed  Google Scholar 

  • Stein WD (1986) Simple diffusion across the membrane bilayer. In: Stein WD, Lieb WR (eds) Transport and diffusion across cell membranes. Academic, London, pp 69–107

    Google Scholar 

  • Stella VJ, Charman WNA, Naringrekar VH (1985) Prodrugs, do they have advantages in clinical practice? Drugs 29:455–473

    Article  CAS  PubMed  Google Scholar 

  • Sturge LM, Whittaker VP (1951) The esterases of horse blood. The specificity of plasma Cholinesterase and ali-esterase. Biochem J 47:518–525

    Google Scholar 

  • Suzuki F, Hayashi H, Ito S, Hayaishi O (1987) Methyl ester of prostaglandin D2 as a delivery system of prostaglandin D2 into brain. Biochim Biophys Acta 917: 224–230

    CAS  PubMed  Google Scholar 

  • Suzuki H, Sawada Y, Sugiyama Y, Iga T, Hanano M (1989) Facilitated transport of benzylpenicillin through the blood-brain barrier in rats. J Pharmacobiodyn 12:182–185

    CAS  PubMed  Google Scholar 

  • Takada T, Greig NH, Vistica DT, Rapoport SI, Smith QR (1991) Affinity of antineoplastic amino acid drugs for the large neutral amino acid transporter of the blood-brain barrier. Cancer Chemother Pharmacol (in Press)

    Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport on the rat. Am J Physiol 247:H484-H493

    CAS  PubMed  Google Scholar 

  • Terasaki T, Pardridge WM (1988) Restricted transport of 3’-azido-3’-deoxy thymidine and dideoxynucleosides through the blood-brain barrier. J Infect Dis 158: 630–632

    Article  CAS  PubMed  Google Scholar 

  • Valner J (1977) Binding of drugs by albumin and plasma proteins. J Pharm Sci 66:447–465

    Article  Google Scholar 

  • Van Bree JB, Audus KL, Brochardt RT (1988) Carrier-mediated transport of baclofen across monolayers of bovine brain endothelial cells in primary culture. Pharm Res 5:369–371

    Article  PubMed  Google Scholar 

  • Van Bree JB, Heijligers-Feijen CD, DeBoer AG, Danhof M, Breimer DD (1991) Stereoselective transport of baclofen across the blood-brain barrier in rats as determined by the unit impulse response methodology. Pharm Res 8:259–262

    Article  PubMed  Google Scholar 

  • Vistica DT, Ahmad S, Fuller R, Hill J (1986) Transport and cytotoxicity of amino acid nitrogen mustards: implications for design of more selective antitumor agents. Fed Proc 45:2447–2450

    CAS  PubMed  Google Scholar 

  • Wagner HN, Burns HD, Dannais RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266

    Article  CAS  PubMed  Google Scholar 

  • Weinstein H, Griffin T, Feeney J (1982) Pharmacokinetics of continuous intravenous and subcutaneous infusion of cytosine arabinoside. Blood 59:1351–1353

    CAS  PubMed  Google Scholar 

  • Wermuth GC (1984) Chemical aspects of pro-drug design. In: Jolles G, Wooldridge KRH (eds) Drug design: fact or fantasy. Academic, London, pp 47–71

    Google Scholar 

  • Williams MG, Earhart RH, Bailey H, Movren JP (1990) Prevention of central nervous system toxicity of the antitumor antibiotic acivicin by concomitant infusion of an amino acid mixture. Cancer Res 50:5475–5480

    CAS  PubMed  Google Scholar 

  • Wilson AA, Scheffel VA, Dannal RF, Strathis M, Ravert HT, Wagner HN (1991) In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands, 2-[18F]- and 4-[18F]-fluorodexetimide. Life Sci 48:1385–1394

    Article  CAS  PubMed  Google Scholar 

  • Zloković BV, Sušić VT, Davson HJG, Begley DJ, Jankov RM, Mitrović DM, Lipovac MN (1989) Saturable mechanism of sleep-inducing peptide (DSIP) at the blood-brain barrier of the vascularly perfused guinea pig brain. Peptides 10:249–254

    Article  PubMed  Google Scholar 

  • Zloković BV, Segal MB, Davson HJG, Lipovac MN, Hyman S, McComb JG (1990) Circulating neuroaetive peptides and the blood-brain and blood-cerebrospinal fluid barriers. Endocrinol Exp 24:9–17

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greig, N.H. (1992). Drug Entry Into the Brain and Its Pharmacologic Manipulation. In: Bradbury, M.W.B. (eds) Physiology and Pharmacology of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76894-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76894-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76896-5

  • Online ISBN: 978-3-642-76894-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics