Skip to main content

Experimental Procedures to Simulate Weathering Under Atmospheres Which May Have Characterized the Early Archean

  • Chapter

Abstract

Weathering experiments with mafic and ultramafíc rock material were carried out under different atmospheric conditions, such as a CO2, a N2 —CO2 — H2 —H2S, and a N2 —O2 —CO2 atmosphere. Thus, a primordial, possible Early Archean, and a present-day atmosphere have been simulated. The experiments were carried out in an especially designed apparatus equipped with pH and redox electrodes to monitor pH and the oxidation poten-tial over the whole period of the experiments.

The experimental results show that weathering under the CO2-rich, H2S-bearing, hypothetical Archean atmosphere was much more intense than under the modern atmosphere. Ferrous iron released by dissolution remained in solution together with Ca, Mg, Na, and K until the solubility products of various ferrous sulfides were exceeded. Given the experimental conditions (Eh—pH — Fe 2+aq ), the precipitated ferrous sulfides lie within the monosulfide stability field on appropriate phase diagrams.

Deduction of a rate law for the cation dissolution is difficult for our experiments because of the superimposition of reactions involving oxidation of Fe2+ , precipitation of FeS, and scavenging by precipitates of various solute species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson PH (1966) Chemical events on the primitive Earth. Proc Natl Acad Sci USA 55: 1365–1372

    Article  Google Scholar 

  • Berner RA (1978) Rate control of mineral dissolution under earth surface conditions. Am J Sci 278: 1235–1252

    Article  Google Scholar 

  • Berner RA, Schott J (1982) Mechanism of pyroxene and amphibole weathering II. Observation of soil grains. Am J Sci 282:1214–1231

    Article  Google Scholar 

  • Bischoff J, Dickson FW (1975) Seawater-basalt interaction at 200 °C and 500 bars: Implications as to the origin of sea floor heavy metal deposits and regulation of seawater chemistry. Earth Planet Sci Lett 25: 385–397

    Article  Google Scholar 

  • Busenberg E, Clemency CV (1976) The dissolution kinetics of feldspars at 25 °C and 1 atm. CO2 partial pressure. Geochim Cosmochim Acta 40:41–49

    Article  Google Scholar 

  • Correns, CW (1961) The experimental chemical weathering of silicates. Clay Minerals Bull 26:249–265

    Article  Google Scholar 

  • Eggiman DW, Manheim FT, Betzer PR (1980) Dissolution and analysis of amorphous silica in marine sediments. J Sediment Petrol 50:215–225

    Google Scholar 

  • Eggleton RA, Boland JN (1982) Weathering of enstatite to talc through a sequence of transitional phases. Clays Clay Minerals 30: 11–20

    Article  Google Scholar 

  • Ewers WE (1983) Chemical factors in the deposition and diagenesis of banded iron-formation. In: TrendallAF, Morris RC (eds) Iron formation: facts and problems. Elsevier, Amsterdam, pp 491–512

    Chapter  Google Scholar 

  • Fanale F (1971) A case for catastrophic early degassing of the Earth. Chem Geol 8: 79–105

    Article  Google Scholar 

  • Furrer G, Stumm W (1986) The coordination chemistry of weathering. I. Dissolution kinetics of μ-Al2O3 and BeO. Geochim Cosmochim Acta 50: 1847–1860

    Article  Google Scholar 

  • Grandstaff DE (1977) Some kinetics of bronzite orthopyroxene dissolution. Geochim Cosmochim Acta 41: 1097–1104

    Article  Google Scholar 

  • Goody RM, Walker JCG (1972) Atmospheres. Prentice Hall, Englewood Cliffs, NJ, 150pp

    Google Scholar 

  • Hamano Y, Ozima M (1978) Earth-atmosphere evolution model based on Ar isotopic data. In: Alexander EC Jr, Ozima M (eds) Terrestrial rare gases. Jpn Sci Soc Press, Tokyo, 173–183pp

    Google Scholar 

  • Harker RI, Tuttle OF (1956) Experimental data on the pCO2-T curve for the reaction: calcite + quartz+ wollastonite + carbon dioxide. Am J Sci 254:239–256

    Article  Google Scholar 

  • Hart R, Hogan L (1978) Earth degassing models and the heterogeneous vs. homogeneous mantle. In: Alexander FC Jr, Ozima M (eds) Terrestrial rare gases, Jpn Sci Soc Press, Tokyo, 193–206pp

    Google Scholar 

  • Holdren GR Jr, Adaris JE (1982) Parabolic dissolution kinetics of silicate minerals: an artifact of nonequilibrium precipitation processes. Geology 10: 186–190

    Article  Google Scholar 

  • Holdren GRJr, Berner RA (1979) Mechanism of feldspar weathering-I. Experimental studies. Geochim Cosmochim Acta 43: 1161 -1171

    Article  Google Scholar 

  • Holdren GR Jr, SpeyerPM (1985) Reaction rate-surface area relationships during the early stages of weathering-I. Initial observation. Geochim Cosmochim Acta 49: 675–881

    Article  Google Scholar 

  • Holland HD (1962) Model for the evolution of the Earth’s atmosphere. In: Engel AEJ, James HL, Leonard BF (eds) Petrological studies. A volume in honor of A.F. Buddington. Geol Soc Am, New York, pp447–478

    Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans. John Wiley & Sons, New York, 351 pp

    Google Scholar 

  • Holland HD (1984 a) The chemical evolution of the atmosphere and oceans. Univ Press, Princeton, NJ, 582 pp

    Google Scholar 

  • Holland HD (1984b) Degassing of the earth. In: Holland HD, Trendall AF (eds) Patterns of change in Earth evolution. Springer, Berlin Heidelberg New York, pp 303–311

    Chapter  Google Scholar 

  • Kasting JF (1987) Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res 34: 205–229

    Article  Google Scholar 

  • Kasting JF (1988) Effect of heavy bombardment on the chemical composition of the early atmosphere. Lunar Planet Inst Contrib 681:43

    Google Scholar 

  • Kasting JF, Ackerman TP (1986) Climatic consequences of very high CO2 levels in Earth’s early atmosphere. Science 234:1383–1385

    Article  Google Scholar 

  • Lafon MG, Mackenzie FT (1974) Early evolution of the ocean-a weathering model. In: Hay WW (ed) Studies in paleooceanography. Soc Econ Paleontol Mineral, Tulsa, Oklahoma, Spec Publ 20:205–218

    Google Scholar 

  • Lagache M (1965) Contribution à l’étude de l’altération des feldspathe, dans l’eau entre 100 et 200°C, sous diverses pressions de CO2, et application à la synthèse des minéraux argileux. Soc Fr Min Cristall Bull 88: 223–253

    Google Scholar 

  • Lagache M (1976) New data on the kinetics of the dissolution of alkali felspars at 200 °C in CO2 charged water. Geochim Cosmochim Acta 40: 157–161

    Article  Google Scholar 

  • Lin FC, Clemency CV (1981) The kinetics of dissolution of muscovites at 25 °C and 1 atm. CO2 partial pressure. Geochim Cosmochim Acta 45: 571–576

    Article  Google Scholar 

  • Lovelock JE, Whitfield M (1982) Life span of the biosphere. Nature (London) 269: 561–563

    Article  Google Scholar 

  • Luce RW, Bartlett RW, Parks GA (1972) Dissolution kinetics of magnesium silicates. Geochim Cosmochim Acta 36:35–50

    Article  Google Scholar 

  • Owen T, Cess RD, Ramanathan V (1979) Enhanced CO2 greenhouse to compenstate for reduced solar luminosity on early Earth. Nature (London) 277: 640–642

    Article  Google Scholar 

  • Popp RK, Frantz JD (1980) Mineral-solution equilibria-Ill. The system Na2O-Al2O3-SiO2-H2O-HCl. Geochim Cosmochim Acta 44: 1029–1037

    Article  Google Scholar 

  • Rubey WW (1951) Geological history of seawater. Bull Geol Soc Am 62:111–1148

    Article  Google Scholar 

  • Rubey WW (1955) Development of the hydrosphere and atmosphere with special reference to probable composition of the early atmosphere. In: Poldervaart A (ed) Crust of the Earth. Geol Soc Am Spec Pap 62: 631–650

    Google Scholar 

  • Schidlowski M (1980) The atmosphere. In: Hutzinger O (ed) The handbook of environmental chemistry, voll, ptA. Springer, Berlin Heidelberg New York, pp 1–16

    Google Scholar 

  • Schidlowski M (1987) Photoautothrophie und Evolution des irdischen Sauerstoffbudgets. In: Jaenicke H (ed) Atmo-sphärische Spurenstoffe. VCH, Weinheim. pp377–396

    Google Scholar 

  • Schidlowski M, Wiggering H (1988) Die Erdatmosphäre im Präkambrium. Entwicklung des atmosphärischen Sauerstoffs. Geowissenschaften 6:197–226

    Google Scholar 

  • Schott J, Berner RA (1985) Dissolution mechanisms of pyroxenes and olivines during weathering. In: Drever JI (ed) The chemistry of weathering. Reidel Dordrecht, pp 35–53

    Google Scholar 

  • Schott J, Berner RA, Sjoberg EL (1981) Mechanism of pyroxene and amphibole weathering-I. Experimental studies of iron-free minerals. Geochim Cosmochim Acta 45:2123–2135

    Article  Google Scholar 

  • Seyfried WE Jr, Bischoff JL (1981) Experimental seawaterbasalt interaction at 300 ºC, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim Cosmochim Acta 45:135–147

    Article  Google Scholar 

  • Siever R, Woodford N (1979) Dissolution kinetics and the weathering of mafic minerals. Geochim Cosmochim Acta 43:717–724

    Article  Google Scholar 

  • Thornber MR, Morris RC, Couper RG (1983) An electrochemical cell that allows optical microscopic examination of a mineral surface while it is reacting. Commonw Sci Ind Res Org (CSIRO) Div Mineral Res Rev, pp 223–225

    Google Scholar 

  • Turekian KK (1964) Degassing of argon and helium from the Earth. In: Brancazio PJ, Cameron AGW (eds) The origin and evolution of atmospheres and oceans. John Wiley & Sons, New York, 74–82

    Google Scholar 

  • Walker JCG (1977) Evolution of the atmosphere. Macmillan, New York, pp318

    Google Scholar 

  • Walker JCG (1986) Carbon dioxide on the early Earth. Origin Life 16:117–127

    Article  Google Scholar 

  • Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86: 9776–9782

    Article  Google Scholar 

  • Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ, Walter MR (1983) Environmental evolution of the Archean-early Proterozoic Earth. In: Schopf JW (ed), Earth’s earliest biosphere: its origin and evolution. Univ Press, Princeton, NJ, pp260–290

    Google Scholar 

  • Wiggering H (1988) Weathering as a control for Precambrian conditions. Lunar Planet Inst Houston Contrib 681:108

    Google Scholar 

  • Wiggering H (1990) Removal of hydrogen sulfide from simulated Archean atmospheres by iron sulfide precipitation. Chem Geol 85:311–320

    Article  Google Scholar 

  • Wiggering H, Selbach HJ, Neumann-Mahlkau P (1986) Experimental weathering of mafic and ultramafic rocks in a possible Archean atmosphere. Precambrian Res 32:181–193

    Article  Google Scholar 

  • Wollast R (1967) Kinetics of the alteration of K-feldspar in buffered solutions at low temperature. Geochim Cosmochim Acta 31: 635–648

    Article  Google Scholar 

  • Wollast R, Mackenzie FT, Bricker OP (1968) Experimental precipitation and genesis of sepiolite at earth-surface conditions. Am Mineral 53:1645–1662

    Google Scholar 

  • Zinder B, Furrer G, Stumm W (1986) The coordination chemistry of weathering-II. Dissolution of Fe(III) oxides. Geochim Cosmochim Acta 50: 1861–1869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiggering, H., Neumann-Mahlkau, P., Selbach, HJ. (1992). Experimental Procedures to Simulate Weathering Under Atmospheres Which May Have Characterized the Early Archean. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics