Skip to main content

An Assessment of the Precambrian/Cambrian Transition Events on the Basis of Carbon Isotope Records

  • Chapter
Early Organic Evolution

Abstract

Renewed interest in the isotope events at the Precambrian/Cambrian (PC/C) transition has led to a recent proliferation of high resolution δ13C records acquired from sedimentary carbonate sections that are stratigraphically continuous. These δ13C records generally show a bimodal distribution of values, with a 13C-enriched mode in the end-Precambrian and a sharp transition to a 13C-depleted mode at, or slightly above, the inferred PC/C boundary. The time-bound δ13C excursions have considerable potential as chronostratigraphic markers which are independent of the controversial biostratigraphic definitions currently used to delineate the PC/C boundary. The relation between δ13C shifts and oceanic fertility changes is reasonably well known but the circumstances under which these changes have occurred at the PC/C boundary are unclear. Using quantitative arguments derived from a simplified carbon cycle model, an ocean stratification event is proposed to have occurred during the latest Vendian followed by a turnover and a return to a ventilated ocean in the lowest Cambrian. The exact relationship between the changing rates of ocean ventilation and the seemingly contemporaneous faunal turnovers remains to be explored.

An understanding of the process of dolomitization is essential for the correct interpretation of the δ13C records because of the predominance of dolomites at the end Precambrian. Using the Lesser Himalaya section as a case study, it is shown that samples contain at least two phases of dolomitization and only the early phase contains the seawater imprint. Late dolomite phases are significantly more depleted in 18O and 13C and more enriched in radiogenic 87Sr relative to the early dolomite phases, and preserve the imprint of hot fluids of crustal provenance which advected through the sediments during burial. The linear relationship observed between the δ18O and δ13C compositions of all dolomite phases does not offer evidence of primary dolomite precipitation from Precambrian sea water, as recently proposed by Tucker,but attests to the conspicuous absence of soil-derived CO2 prior to the advent of organic soils.

On sabbatical leave from the Department of Geology & Geophysics. Louisiana State University. Baton Rouge. LA 70803. USA

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aharon P, Chappell J (1986) Oxygen isotopes, sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105yrs. Palaeogeogr Palaeoclimatol Palaeoecol 56: 337–379

    Article  Google Scholar 

  • Aharon P, Schidlowski M. Singh IB (1987a) Chronostratigraphic markers in the end-Precambrian carbon isotope record of the Lesser Himalaya. Nature (London) 327: 699–702

    Article  Google Scholar 

  • Aharon P, Socki RA, Chan L (1987b) Dolomitization of atolls by sea water convection flow: test of a hypothesis at Niue, South Pacific. J Geol 95: 187–203

    Article  Google Scholar 

  • Arthur MA, Dean WE, Schlanger SO (1985 a) Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to Present. Geophysical monograph 32. Am Geophys Union, Washington DC, pp. 504–529

    Chapter  Google Scholar 

  • Arthur MA, Dean WE, Claypool GE (1985b) Anomalous 13C-enrichment in modern marine organic matter. Nature (London) 315: 216–218

    Article  Google Scholar 

  • Awramik SM (1971) Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 174: 825–827

    Article  Google Scholar 

  • Awramik SM (1986) The Precambrian-Cambrian boundary and geochemical perturbations. Nature (London) 319: 696

    Article  Google Scholar 

  • Banerjee DM, Schidlowski M, Arneth JD (1986) Genesis of upper Proterozoic-Cambrian phosphorite deposits of India: isotopic inferences from carbonate fluorapatite, carbonate and organic carbon. Precambrian Res 33: 239–253

    Article  Google Scholar 

  • Bjorlykke K (1982) Correlation of late Precambrian and early Paleozoic sequences by eustatic sea level changes and the selection of the Precambrian-Cambrian boundary. Precambrian Res 17: 99–104

    Article  Google Scholar 

  • Brasier MD (1980) The lower Cambrian transgression and glauconite-phosphate facies in western Europe. J Geol Soc London 137:695–703

    Article  Google Scholar 

  • Brasier MD (1982) Sea level changes, facies changes and the late Precambrian-early Cambrian evolutionary explosion. Precambrian Res 17: 105–123

    Article  Google Scholar 

  • Brasier MD, Singh P (1987) Microfossils and Precambrian-Cambrian boundary stratigraphy at Maldeota, Lesser Himalaya. Geol Mag 124: 323–345

    Article  Google Scholar 

  • Broecker WS (1982) Ocean chemistry during glacial time. Geochim Cosmochim Acta 46: 1689–1705

    Article  Google Scholar 

  • Cook PJ, Shergold JH (1984) Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature (London) 308:231–236

    Article  Google Scholar 

  • Cowie JW, Glaessner MF (1975) The Precambrian-Cambrian boundary: a symposium. Earth Sci Rev 11:209–251

    Article  Google Scholar 

  • Cowie JW, Rozanov AY (1983) Precambrian-Cambrian boundary candidate, Aldan River, Yakutia, USSR. Geol Mag 120:129–139

    Article  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12: 133–149

    Article  Google Scholar 

  • Daly RA (1909) First calcareous fossils and the evolution of the limestones. Am Geol Soc Bull: 153–170

    Google Scholar 

  • Degens ET. Kazmierczak J, Ittekkot V (1986) Biomineralization and the carbon isotope record. Tschermaks Mineral Petrol Mitt 35:117–126

    Article  Google Scholar 

  • Donovan SK (1987) The fit of the continents in the late Precambrian. Nature (London) 327:139–141

    Article  Google Scholar 

  • Elderfield H (1986) Strontium isotope stratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 57:71–90

    Article  Google Scholar 

  • Faure G (1986) Principles of isotope geology. John Wiley & Sons, New York, 587 pp

    Google Scholar 

  • Goodfellow WD (1986) Anoxic oceans and short-term carbon isotope trends. Nature (London) 322:116–117

    Article  Google Scholar 

  • Hirsch P (1978) Microbial mats in a hypersaline Solar Lake:Types, composition and distribution. In:Krumbein WE (ed) Environmental biogeochemistry and geo-microbiology. The aquatic environment 1. Ann Arbor Science, Michigan, pp 189–201

    Google Scholar 

  • Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature (London) 267:403–408

    Article  Google Scholar 

  • Hsu KJ (1986) The Precambrian-Cambrian boundary and geochemical perturbations-replies. Nature (London) 319:697

    Article  Google Scholar 

  • Hsu KJ, Oberhansli H, Gao JY, Shu S, Haihong C, Krahenbuhl U (1985) “Strangelove” ocean before the Cambrian explosion. Nature (London) 316:809–811

    Article  Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature (London) 269:209–213

    Article  Google Scholar 

  • Keith ML (1982) Violent volcanism, stagnant oceans and some inferences regarding petroleum, strata-bound ores and mass extinctions. Geochim Cosmochim Acta 46:2621–2637

    Article  Google Scholar 

  • Keto LS, Jacobsen SB (1987) Nd and Sr isotopic variations of early Paleozoic oceans. Earth Planet Sci Lett 84:27–41

    Article  Google Scholar 

  • Kolodny Y (1980) Carbon isotopes and depositional environment of a high productivity sedimentary sequence-the case of the Mishash-Ghareb Formations, Israel. Isr J Earth Sci 29: 147–156

    Google Scholar 

  • Knoll AH, Butterfield NJ (1989) New window on Proterozoic life. Nature (London) 337:602–603

    Article  Google Scholar 

  • Knoll AH, Hayes JM, Kaufman AJ, Swett K, Lambert IB (1986) Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East Greenland. Nature (London) 321:832–838

    Article  Google Scholar 

  • Lambert IB, Walter MR, Wenlong Z, Songnian L, Guogan M (1987) Palaeoenvironment and carbon isotope stratigraphy of upper Proterozoic carbonates of the Yangtze Platform. Nature (London) 325: 140–142

    Article  Google Scholar 

  • Magaritz M (1989) 13C minima follow extinction events:a clue to faunal radiation. Geology 17: 337–340

    Article  Google Scholar 

  • Magaritz M, Schulze KH (1980) Carbon isotope anomaly of the Permian period. Contrib Sedimentol 9:269–277

    Google Scholar 

  • Magaritz M, Holser WT, Kirschvink JL (1986) Carbon isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature (London) 320:258–259

    Article  Google Scholar 

  • Matthews SC, Cowie JW (1979) Early Cambrian transgression. J Geol Soc London 136: 133–135

    Article  Google Scholar 

  • McMenamin MAS (1987) The emergence of animals. Sci Am 256:94–102

    Article  Google Scholar 

  • Morris SC, Bengtson S (1986) The Precambrian-Cambrian boundary and goechemical perturbations. Nature (London) 319:696–697

    Article  Google Scholar 

  • Orth CJ, Gilmore JS, Quintana LR, Sheehan PM (1986) Terminal Ordovician extinction:geochemical analysis of the Ordovician, Silurian boundary, Anticosti Island, Quebec. Geology 14:433–436

    Article  Google Scholar 

  • Pratt BR (1982) Stromatolite decline-a reconsideration. Geology 10:512–515

    Article  Google Scholar 

  • Schidlowski M, Eichmann R. Junge CE (1975) Precambrian sedimentary carbonates:carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res 2: 1–69

    Article  Google Scholar 

  • Schidlowski M, Matzigkeit U, Mook WG, Krumbein WE (1985) Carbon isotope geochemistry and 14C ages of microbial mats from the Gavish Sabkha and the Solar Lake. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems. Ecological studies 53. Springer Berlin Heidelberg New York, pp 381–401

    Chapter  Google Scholar 

  • Singh IB, Rai V (1983) Fauna and biogenic structures in Krol-Tal succession (Vendian-early Cambrian), Lesser Himalaya: their biostratigraphic and palaeoecological significance. J Palaeontol Soc India 28:67–90

    Google Scholar 

  • Smith SV (1981) Marine macrophytes as a global carbon sink. Science 211:838–840

    Article  Google Scholar 

  • Tucker ME (1982) Precambrian dolomites: petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology 10:7–12

    Article  Google Scholar 

  • Tucker ME (1986) Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco. Nature (London) 319:48–50

    Article  Google Scholar 

  • Vidal G, Knoll AH (1983) Proterozoic plankton. Mem Geol Soc Am 161:265–277

    Google Scholar 

  • Veizer J (1983) Trace elements and isotopes in sedimentary carbonates. Rev Mineral 11:265–300

    Google Scholar 

  • Veizer J (1989) Strontium isotopes in sea water through time. Annu Rev Earth Planet Sci 17:141–167

    Article  Google Scholar 

  • Veizer J, Hoefs J (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40: 1387–1395

    Article  Google Scholar 

  • Walter MR (1989) Major features in record of Proterozoic stromatolites. 28th Int Geol Congr Abstr 3:318–319

    Google Scholar 

  • Wright J (1989) REE in fossil apatite record Phanerozoic OAE. 28th Int Geol Congr Abstr 3:383–384

    Google Scholar 

  • Yanshin AL, Zharkov MA (1986) Epochs and evolution of phosphate deposition through geologic time. Int Geol Rev 28:390–401

    Article  Google Scholar 

  • Zang WL, Walter MR (1989) Latest Proterozoic plankton from the Amadeus Basin in central Australia. Nature (London) 337:642–645

    Article  Google Scholar 

  • ZengerDH, Dunham JB, Ethington RL (eds) (1980) Concepts and models of dolomitization. SEPM Spec Publ 28, 320 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aharon, P., Liew, T.C. (1992). An Assessment of the Precambrian/Cambrian Transition Events on the Basis of Carbon Isotope Records. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics