Skip to main content

Structural Principles of Flavonoid Antioxidants

  • Conference paper

Abstract

Flavonoids are the most ubiquitous and structurally evolved class of plant phenolic compounds. Based on a few principal structures (see Fig. 1), multitudinous hydroxylation, methoxylation, and glycosylation patterns exist. At present more than 4000 individual substances are known [31]. Plants contain both glycosylated compounds and aglycones [74]. As can be expected from the structural diversity, a variety of biological functions have been attributed to flavonoids: photo reception, light screening, visual attraction, feeding repellance, phytoalexin function, etc. [30]. Antioxidative properties were first suggested when it was discovered that the flavonoid content of food contributes to an extended shelf life and retards spoilage [43]. Owing to the rapid degradation of flavonoids in the digestive tract [28, 43], pharmacological effects in mammals are limited [32, 50]. Only few flavonoid derivatives have so far been shown to be of therapeutic value: rutoside [68], cyanidanol (catechin) [20], silybin [69, 70]; all act predominantly as detoxicants after liver injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams GE, Michael BD (1976) Pulse radiolysis of benzoquinone and hydroquinone. Semiquinone formation by water elimination from trihydroxycyclohexadienyl radicals. Trans Faraday Soc 63: 1171–1180

    Article  Google Scholar 

  2. Affany A, Salvayre R, Douste-Blazy L (1987) Comparison df the protective effect of various flavonoids against lipid peroxidation of erythrocyte membranes (induced by cumene hydroperoxide). Fundam Clin Pathol 1: 451–457

    Article  CAS  Google Scholar 

  3. Alfassi ZB, Schuler RH (1985) Reaction of azide radicals with aromatic compounds. Azide as a selective oxidant. J Phys Chem 89: 3359–3363

    Article  CAS  Google Scholar 

  4. Ayabe S-I, Udagawa A, Furuya T (1988) NAD(P)H-dependent 6’-deoxychalcone synthase activity in Glycyrrhiza echinata cells induced by yeast extract. Arch Biochem Biophys 261: 458–462

    Article  PubMed  CAS  Google Scholar 

  5. Baumann J, Wurm G, von Bruchhausen F (1980) Hemmung der Prostaglandin- synthetase durch Flavonoide und Phenolderivate im Vergleich mit deren Ö2 Radikalfängereigenschaften. Arch Pharm 313: 330–337

    Article  CAS  Google Scholar 

  6. Beretz A, Cazenave JP, Anton R (1982) Inhibition of aggregation and secretion of human platelets by quercetin and other flavonoids: structure-activity relationships. Agents Actions 12: 382–387

    Article  PubMed  CAS  Google Scholar 

  7. Bors W (1986) Bedeutung und Wirkungsweise von Antioxidantien. In: Elstner EF, Bors W, Wilmanns W (eds) Reaktive Sauerstoffspezies in der Medizin. Springer, Berlin Heidelberg New York, pp 161–183

    Google Scholar 

  8. Bors W, Saran M (1987) Radical scavenging by flavonoid antioxidants. Free Radic Res Commun 2: 289–294

    Article  PubMed  CAS  Google Scholar 

  9. Bors W, Saran M, Michel C, Tait D (1984a) Formation and reactivities of oxygen free radicals. In: Breccia A, Greenstock GL, Tamba M (eds) Advances on oxygen radicals and radioprotectors. Lo Scarabeo Bologna, pp 13–27

    Google Scholar 

  10. Bors W, Michel C, Saran M (1984b) Inhibition of the bleaching of the carotenoid crocin. A rapid test for quantifying antioxidant activity. Biochim Biophys Acta 796: 312–319

    CAS  Google Scholar 

  11. Bors W, Erben-Russ M, Saran M (1987) Fatty acid peroxyl radicals: their generation and reactivities. Bioelectrochem Bioenerg 18: 37–49

    Article  CAS  Google Scholar 

  12. Bors W, Heller W, Michel C, Saran M (1989) Reactions of flavonoid antioxidants with peroxyl radicals. 3rd. Int Conference on anticarcinogens and radiation protection. Dubrovnik, Oct. 15–21, 1989

    Google Scholar 

  13. Bors W, Heller W, Michel C, Saran M (1990a) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. In: Packer L, Glazer AN (eds) Methods in enzymology, vol 186. Academic, New York, pp 343–355

    Google Scholar 

  14. Bors W, Heller W, Michel C, Saran M (1990b) Radical chemistry of flavonoid antioxidants. In: Emerit I, Packer L, Auclair C (eds) Antioxidants in therapy and preventive medicine. Plenum, New York, pp 165–170

    Google Scholar 

  15. Bors W, Czapski G, Saran M (1991) An expanded function for superoxide dismutase. Free Radic Res Commun 12–13: 411–417

    Article  Google Scholar 

  16. Brown JP (1980) A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compounds. Mutat Res 75: 243–277

    PubMed  CAS  Google Scholar 

  17. Buening MK, Chang RL, Huang MT, Fortner JG, Wood AW, Conney AH (1981) Activation and inhibition of benzo[a]pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Res 41: 67–72

    PubMed  CAS  Google Scholar 

  18. Burlakova EB (1975) Bioantioxidants and synthetic inhibitors of radical processes. Russ Chem Rev 44: 871–880

    Article  Google Scholar 

  19. Clemetson CAB, Andersen L (1966) Plant polyphenols as antioxidants for ascorbic acid. Ann NY Acad Sei 136: 339–378

    Article  CAS  Google Scholar 

  20. Conn HO (ed) (1984) (+)-Cyanidanol-3 in diseases of the liver. Proceedings of the International Workshop. Grune & Stratton, San Francisco

    Google Scholar 

  21. Dewick PM (1988) Isoflavonoids. In: Harborne JB (ed) The flavonoids. Advances in research since 1980. Chapman & Hall, London, pp 125–209

    Google Scholar 

  22. Erben-Russ M, Michel C, Bors W, Saran M (1987a) Absolute rate constants of alkoxyl radical reactions in aqueous solutions. J Phys Chem 91: 2362–2365

    Article  CAS  Google Scholar 

  23. Erben-Russ M, Bors W, Saran M (1987b) Reactions of linoleic acid peroxyl radicals with phenolic antioxidants: a pulse radiolysis study. Int J Radiat Biol 52: 393–412

    Article  CAS  Google Scholar 

  24. Erben-Russ M, Michel C, Bors W, Saran M (1987c) Determination of sulfite radical reaction rate constants by means of competition kinetics. Radiat Environ Biophys 26: 289–294

    Article  PubMed  CAS  Google Scholar 

  25. Ferrell JE, Chang Sing PDG, Loew G, King R, Mansour JM, Mansour TE (1979) Structure/activity studies of flavonoids as inhibitors of cAMP phosphodiesterase and relationship to quantum chemical indices. Mol Pharmacol 16: 556–568

    PubMed  CAS  Google Scholar 

  26. Ferriola PC, Cody V, Middleton E (1989) Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structure activity relationships. Biochem Pharmacol 38: 1617–1624

    Google Scholar 

  27. Grisham MB, McCord JM (1986) Chemistry and cytotoxicity of reactive oxygen metabolites. In: Taylor AE, Matalon S, Ward PA (eds) Physiology of oxygen radicals. Am Physiol Soc, Bethesda, pp 1–18

    Google Scholar 

  28. Hackett AM (1986) The metabolism of flavonoid compounds in mammals. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine. Liss, New York, pp 177–194

    Google Scholar 

  29. Hagiwara M, Inoue S, Tanaka T, Nunoki K, Ito M, Hidaka H (1988) Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonine protein kinases. Biochem Pharmacol 37: 2987–2992

    Article  PubMed  CAS  Google Scholar 

  30. Harborne JB (1986) Nature, distribution and function of plant flavonoids. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine. Liss, New York, pp 15–24

    Google Scholar 

  31. Harborne JB (ed) (1988) Flavonoids: advances in research since 1980. Chapman & Hall, London

    Google Scholar 

  32. Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32: 1141–1148

    Article  PubMed  CAS  Google Scholar 

  33. Heller W, Forkmann G (1988) Biosynthesis. In: Harborne JB (ed) The flavonoids. Advances in research since 1980. Chapman & Hall, London, pp 399–425

    Google Scholar 

  34. Hodnick WF, Kung FS, Roettger WJ, Bohmont CW, Pardini RS (1986) Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids. Biochem Pharmacol 35: 2345–2357

    Article  PubMed  CAS  Google Scholar 

  35. Hodnick WF, Bohmont CW, Capps C, Pardini RS (1987) Inhibition of the mitochondrial NADH-oxidase (NADH-coenzyme Q oxidoreductase) enzyme system by flavonoids: a structure activity study. Biochem Pharmacol 36: 2873–2874

    Article  PubMed  CAS  Google Scholar 

  36. Hodnick WF, Milosavljevic EB, Nelson JH, Pardini RS (1988a) Electrochemistry of flavonoids. Relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem Pharmacol 37: 2607–2611

    Google Scholar 

  37. Hodnick WF, Kalyanaraman B, Pritsos CA, Pardini RS (1988b) The production of hydroxyl and semiquinone free radicals during the autoxidation of redox active flavonoids. In: Simic MG, Taylor KA, Ward JF, von Sonntag C (eds) Oxygen radicals in biology and medicine, (Basic life sciences, vol 49 ) Plenum, New York, pp 149–152

    Google Scholar 

  38. Huguet AI, Manez S, Alcaraz MJ (1990) Superoxide scavenging properties of flavonoids in a non-enzymic system. Z Naturforsch 45c: 19–24

    CAS  Google Scholar 

  39. Husain SR, Cillard J, Cillard P (1987) Hydroxyl radical scavenging activity of flavonoids. Phytochemistry 26: 2489–2491

    Article  CAS  Google Scholar 

  40. Jha, HC, von Recklinghausen G, Zilliken F (1985) Inhibition of in vitro microsomal lipid peroxidation by isoflavonoids. Biochem Pharmacol 34: 1367–1369

    Article  PubMed  CAS  Google Scholar 

  41. Kalyanaraman B, Sivarajah K (1984) The ESR study of free radicals formed during the arachidonic acid cascade and cooxidation of xenobiotics by prostaglandin synthase. In: Pry or WA (ed) Free radicals in biology, vol 6. Academic, New York, pp 149–198

    Google Scholar 

  42. Klopman G, Dimayuga ML (1988) Computer-automated structure evaluation of flavonoids and other structurally related compounds as glyoxalase I enzyme inhibitors. Mol Pharmacol 34: 218–222

    PubMed  CAS  Google Scholar 

  43. Kuehnau J (1976) The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 24: 117–191

    CAS  Google Scholar 

  44. Kyriakidis SM, Sotiroudis TG, Evangelopoulos AE (1986) Interaction of flavonoids with rabbit muscle phosphorylase kinase. Biochim Biophys Acta 871: 121–129

    Article  PubMed  CAS  Google Scholar 

  45. Landolfi R, Mower RL, Steiner M (1984) Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Biochem Pharmacol 33: 1525–1530

    Article  PubMed  CAS  Google Scholar 

  46. Mabry TJ, Markham KR, Thomas MR (eds) (1970) The systematic identification of flavonoids vol 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  47. Mahoney LR (1969) Antioxidantien. Angew Chem 81: 555–563

    Article  Google Scholar 

  48. McGregor JT (1986) Mutagenic and carcinogenic effects of flavonoids. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine. Liss, New York, pp 411–424

    Google Scholar 

  49. Mehta AC, Seshadri TR (1959) Flavonoids as antioxidants. J Sei Ind Res 18B: 24–28

    Google Scholar 

  50. Middleton E (1984) The flavonoids. Trends Pharmacol Sei 5: 335–338

    CAS  Google Scholar 

  51. Murakami H, Asakawa T, Terao J, Matsushita S (1984) Antioxidative stability of tempeh and liberation of isoflavones by fermentation. Agric Biol Chem 48: 2971–2975

    Article  CAS  Google Scholar 

  52. Nagao M, Morita N, Yahagi T, Shimizu M, Kuroyanagi M, Fukuoka M, Yoshihira K, Natori S, Fujino T, Sugimura T (1981) Mutagenicities of 61 flavonoids and 11 related compounds. Environ Mutagen 3: 401–419

    Article  PubMed  CAS  Google Scholar 

  53. Okuda J, Miwa I, Inagaki K, Horie T, Nakayama M (1982) Inhibition of aldose reductases from rat and bovine lenses by flavonoids. Biochem Pharmacol 31: 3807–3822

    Article  PubMed  CAS  Google Scholar 

  54. Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48: 657–667

    Article  PubMed  CAS  Google Scholar 

  55. Ratty AK, Das NP (1988) Effects on flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship. Biochem Med Metab Biol 39: 69–79

    Article  PubMed  CAS  Google Scholar 

  56. Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37: 837–841

    Article  PubMed  CAS  Google Scholar 

  57. Ruckstuhl M, Landry Y (1981) Inhibition of lung cyclic AMP- and cyclic GMP– phosphodiesterases by flavonoids and other chromone-like compounds. Biochem Pharmacol 30: 697–702

    Article  PubMed  CAS  Google Scholar 

  58. Schwabe KP, Flohe L (1972) Catechol-O-methyltransferase. III. Beziehung zwischen der Struktur von Flavonoiden und deren Eignung als Inhibitoren der Catechol-O- Methyltransferase. Z Physiol Chem 353: 476–482

    Google Scholar 

  59. Sherwin ER (1972) Antioxidants for food fats and oils. J Am Oil Chem Soc 49: 468–472

    Article  CAS  Google Scholar 

  60. Slabbert NP (1977) Ionisation of some flavanols and dihydroflavanols. Tetrahedron 33: 821–824

    Article  CAS  Google Scholar 

  61. Smith DA, Bank SW (1986) Biosynthesis elicitation and biological activity of iso- flavonoid phytoalexins. Phytochemistry 25: 979–995

    Article  CAS  Google Scholar 

  62. Takahama U (1987) Oxidation products of kaempferol by superoxide anion radical. Plant Cell Physiol 28: 953–957

    CAS  Google Scholar 

  63. Takahama U, Youngman RJ, Elstner EF (1984) Transformation of quercetin by singlet oxygen generated by a photosensitized reaction. Photobiochem Photobiophys 7: 175–181

    CAS  Google Scholar 

  64. Torel J, Cillard J, Cillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radicals. Phytochemistry 25: 383–385

    Article  CAS  Google Scholar 

  65. Varma SD, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids - their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25: 2505–2513

    Article  PubMed  CAS  Google Scholar 

  66. Vernet A, Siess MH (1986) Comparison of the effects of various flavonoids on ethoxycoumarin deethylase activity of rat intestinal and hepatic microsomes. Food Chem Toxicol 24: 857–861

    Article  PubMed  CAS  Google Scholar 

  67. Vliegenthart JFG (1979) Enzymic and non enzymic oxidation of polyunsaturated fatty acids. Chem Ind 241–251

    Google Scholar 

  68. Voelter W, Jung G (eds) (1978) 0-(ß-Hydroxyethyl)-rutoside - experimentelle und klinische Ergebnisse. Springer, Berlin Heidelberg New York

    Google Scholar 

  69. Vogel G, Trost W, Braatz R, Odenthal KP, Brüsewitz G, Antweiler H, Seeger R, Ulbrich M (1975) Untersuchungen zu Pharmakodynamik, Angriffspunkt und Wirkungsmechanismus von Silymarin, dem anti-hepatotoxischen Prinzip aus Silybum marianum (L.) Gaertn. 1. Mitt.: Akute Toxikologie bzw. Verträglichkeit, allgemeine und spezielle (Leber-)Pharmakologie. 2. Mitt.: Besondere Untersuchungen zu Angriffspunkt und Wirkungsmechanismus. Arzneim Forsch 25:82–90, and 179–187

    Google Scholar 

  70. Wagner H (1986) Antihepatotoxic flavonoids. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine. Liss, New York, pp 545–558

    Google Scholar 

  71. Wagner GR, Youngman RJ, Elstner EF (1988) Inhibition of chloroplast photo- oxidation by flavonoids and mechanisms of the antioxidative action. J Photochem Photobiol B 1: 451–460

    Article  CAS  Google Scholar 

  72. Welle R, Grisebach H (1988) Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the biosynthesis of 6’-deoxychalcone. FEBS Lett 236: 221–225

    Article  CAS  Google Scholar 

  73. Wheeler EL, Berry DL (1986) In vitro inhibition of mouse epidermal cell lipoxygenase by flavonoids: structure-activity relationships. Carcinogenesis 7: 33–36

    Article  PubMed  CAS  Google Scholar 

  74. Wollenweber E, Dietz VH (1981) Occurrence and distribution of free flavonoid aglycones in plants. Phytochemistry 20: 896–932

    Google Scholar 

  75. Zilliken FW (1981) Isoflavones and related compounds, methods of preparing and using and antioxidant compositions containing same. United States Patent No 4, 264, 509

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bors, W., Heller, W., Michel, C., Saran, M. (1992). Structural Principles of Flavonoid Antioxidants. In: Csomós, G., Fehér, J. (eds) Free Radicals and the Liver. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76874-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76874-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76876-7

  • Online ISBN: 978-3-642-76874-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics