Skip to main content

Mechanical and Other Problems of Artificial Valves

  • Chapter

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 86))

Abstract

Artificial heart valves were first used in the late 1950s and early 1960s. Following the success of these early implants, the replacement of diseased or damaged valves with prosthetic substitutes rapidly became accepted as a routine clinical procedure. During the next 30 years, the field of heart valve replacement became one of the major growth areas in cardiac surgery, and it is estimated that over 150 000 valves are replaced in the world each year. Following an initial steady increase in the number of implants, the requirement for valve substitutes in the United States and Europe is beginning to stabilise. World demand for these devices, however, continues to expand at a rate of 10%–12% per year.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Black MM (1973) Development and testing of prosthetic heart valves: cardiovascular simulation and life support systems. In: Kenedi RM (ed) Perspectives in biomedical engineering. Macmillan, London, pp 21–28

    Google Scholar 

  • Black MM, Drury PJ, Tindale WB (1982) A bicuspid bioprosthetic mitral valve. Proc Eur Soc Artif Organs 9: 116–119

    Google Scholar 

  • Black MM, Drury PJ, Tindale WB (1983a) Twenty-five years of heart valve substitutes: a review. J R Soc Med 76: 667–680

    PubMed  CAS  Google Scholar 

  • Black MM, Drury PJ, Smith GH (1983b) Long-term assessment of heart valve substitutes. Life Support Systems 1: 301–304

    PubMed  Google Scholar 

  • Black MM, Drury PJ, Tindale WB (1985) The clinical performance of bioprosthetic heart valves. In: Williams D (ed) Biocompatibility of tissue analogs, vol 2. CRC, Boca Raton, FL., pp 173–186

    Google Scholar 

  • Black MM, Drury PJ, Tindale WB, Lawford PV (1986) The Sheffield bicuspid valve; concept, design and in vitro and, in-vivo assessment. In: Bodnar E, Yacoub M (eds) Biologic bioprosthetic valves. Proc 3rd Int Symp. Yorke Medical, New York, pp 709–717

    Google Scholar 

  • Black MM, Cochrane T, Drury PJ, Lawford PV (1987a) Artificial heart valves past performance and future prospects. Cardiovasc Rev Rep 8: 40–45

    Google Scholar 

  • Black MM, Cochrane T, Drury PJ, Lawford PV (1987b) Assessing the performance and safety of artificial heart valves. Proc 9th EMBS Conference 3: 1183–1184

    Google Scholar 

  • Black MM, Cochrane T, Drury PJ, Lawford PV (1990a) A hydrodynamic model for the left side action of the human heart. Proc 12th Annual Int Conf of the IEEE, IEEE, USA, pp 535–536

    Google Scholar 

  • Black MM, Cochrane T, Drury PJ, Lawford PV (1990c) In vitro and in vivo performance of artificial heart valves. Proc Conf on Medical and Biological Implant Technology, London. UK Liaison Committee for Services Allied to Medicine and Biology

    Google Scholar 

  • Black MM, Howard IC, Huang X, Patterson EA (1991) A three-dimensional analysis of a bioprosthetic heart valve. J Biomech 24: 793–801

    Article  PubMed  CAS  Google Scholar 

  • Black MM, Lawford PV, Cochrane T (1992) Health equipment information bulletin. Evaluation of mechanical valve prostheses, Report no MDD/92/46 Department of Health, London

    Google Scholar 

  • Bruss K-H, Real H, Van Gilse J, Knott E (1983) Pressure drop and velocity fields at four mechanical heart valve prosthesis: Björk-Shiley Concave-Convex, Hall Kaster and St Jude Medical. Life Supp Syst 1: 3–22

    CAS  Google Scholar 

  • Chandran KB (1985) Pulsatile flow past St. Jude medical bi-leaflet valve: an in vitro study. J Thorac Cardiovasc Surg 89: 743–749

    PubMed  CAS  Google Scholar 

  • Christie GW, Medland IC (1982) A non-linear finite element stress analysis of bioprosthetic heart valves. In: Gallagher RH, Simon BR, Johnson PC, Gross JF (eds) Finite elements in biomechanics. Wiley, New York, pp 153–179

    Google Scholar 

  • Clark C (1976) The fluid mechanics of aortic stenosis. I: Theory and steady flow experiments. J Biomech 9: 521–528

    Article  PubMed  CAS  Google Scholar 

  • Dellsperger KC, Wieting DW, Baehr DA, Band RJ, Brugger J-P, Harrison EC (1983) Regurgitation of prosthetic heart valves; dependence on heart rate and cardiac output. Am J Cardiol 51: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Demiray H (1972) A note on the elasticity of soft biological tissues. J Biomech 5: 309–311

    Article  PubMed  CAS  Google Scholar 

  • Drury PJ, Kay R, Lawford PV, Black MM (1986) Statistical reappraisal of the analysis of heart valve patient follow-up data–the estimation of valve failure rates. Life Supp Syst 4: 121–123

    Google Scholar 

  • Drury PJ, Black MM, Lawford PV, Kay R (1987) The long-term clinical assessment of heart valve substitutes. Eng Med 16: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Dubini G, Pietrabissa R, Fumero R (1991) Computational fluid dynamics of artificial heart valves. Int J Artif Organs 14: 169–174

    Google Scholar 

  • Ferrans VJ, Spray TL, Billingham ME, Roberts WC (1978) Structural changes in glutaraldehydetreated porcine heterografts used as substitute cardiac valves. Transmission and scanning electron microscopic observations in 12 patients. Am J Cardiol 41: 1159–1184

    Article  PubMed  CAS  Google Scholar 

  • Fessatidis IT, Vassiliadis KE, Monro JL, Ross JK, Shore DF, Drury PJ (1989) Thirteen years’ evaluation of the Björk-Shiley isolated mitral valve prosthesis. The Wessex experience. J Cardiovasc Surg 30: 957–965

    CAS  Google Scholar 

  • Fisher J, Reece IJ, Jack GR, Cathcart L, Wheatley DJ (1986) Laboratory assessment of the design, function and durability of pericardial bioprostheses. In: Unsworth D, Black MM, Drury PJ, Taylor K (eds) Heart valve engineering. Institution of Mechanical Engineers (IMechE), London, pp 57–64

    Google Scholar 

  • Fumero R, Pietrabissa R (1986) Fluid dynamic models as a guide to determine prosthetic heart valve diameter. J Biomech 19: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Fumero R, Pietrabissa R (1986) Fluid dynamic models as a guide to determine prosthetic heart valve diameter. J Biomech 19: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Gabbay S, McQueen DH, Yellin EL, Frater RWM (1978) In vitro hydrodynamic comparison of mitral valve prosthesis at high flow rates. J Thorac Cardiovasc Surg 76: 771–787

    PubMed  CAS  Google Scholar 

  • Gibbon JH (1954) Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 37: 171–185

    PubMed  Google Scholar 

  • Hamid SM, Sabbah HN, Stein PD (1985) Finite element evaluation of stresses on closed leaflets of bioprosthetic heart valves with flexible stents. Finite Elements Anal Design 1: 213–225

    Article  Google Scholar 

  • Hasenkam JM, Ostergaard JK, Pedersen EM, Ruben PK, Nygaard H, Schurizek BA (1988a) A model for acute haemodynamic studies in ascending aorta in pigs. Cardiovasc Res 22: 464–471

    Article  PubMed  CAS  Google Scholar 

  • Hasenkam JM, Pedersen EM, Ostergaard JH, Nygaard H, Pauben PK, Johannsen G, Schurizek BA (1988b) Velocity fields and turbulent stresses downstream of biological and mechanical aortic valve prosthesis implanted in pigs. Cardiovasc Res 22: 472–483

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Black MM, Howard IC, Patterson EA (1990) A two-dimensional finite element analysis of a bioprosthetic heart valve. J Biomech 23: 753–762

    Article  PubMed  CAS  Google Scholar 

  • Hufnagel CA (1951) Aortic plastic valvular prostheses. Bull Georgetown U Med Cent 4: 128–130

    Google Scholar 

  • Kaiser GA, Hancock WD, Lukban SB, et al. (1969) Clinical use of a new design stented xenograft heart valve prosthesis. Surg Forum 20: 137–138

    PubMed  CAS  Google Scholar 

  • Knott E, Reul H, Steinseifer U (1986) Pressure drop, energy loss and closure volume of prosthetic heart valves in aortic and mitral position under pulsatile flow conditions. Life Supp Syst 4 (S2): 139–141

    Google Scholar 

  • Lawford PV, Roberts K, Black MM, Drury PJ, Bilton G (1986) The in vivo durability of bioprosthetic heart valves — modes of failure observed in explanted valves. In: Heart valve engineering. IMechE, London, pp 65–74

    Google Scholar 

  • Lawford PV, Roberts K, Black MM, Drury PJ, Bilton G (1987) The in vivo durability of bioprosthetic heart valves — modes of failure observed in explanted valves. Eng Med 16: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Martin TRP, Palmer JA, Black MM (1978) A new apparatus for the in vitro study of aortic valve mechanics. Eng Med 7: 229–230

    Article  Google Scholar 

  • Martin TRP, Van Noort R, Black MM, Morgon J (1980) Accelerated fatigue testing of biological tissue heart valves. Proc ESA 7: 315–319

    Google Scholar 

  • Reul H (1984) In: Planck H et al. (eds) Polyurethanes in biomedical engineering. Elsevier Science, Amsterdam, pp 257–277

    Google Scholar 

  • Reul H, Black MM (1984) The design development and assessment of heart valve substitutes. In Bajzer, Baxa P, Franconi C (eds) Proceedings of the 2nd International Conference on Application of Physics to Medicine and Biology. Singapore, World Scientific Publishing, 99

    Google Scholar 

  • Ross DN (1962) Homograft replacement of the aortic valve. Lancet II: 487

    Google Scholar 

  • Ross DN (1967) Replacement of the aortic and mitral valve with a pulmonary autograft. Lancet II: 956

    Article  Google Scholar 

  • Rousseau EPM, Steenhoven AA, von Hansen JD, Huysmans HA (1988) A mechanical analysis of the closed Hancock heart valve prosthesis. J Biomech 21: 543–562

    Article  Google Scholar 

  • Sahay KB (1984) On the choice of strain energy function for mechanical characterisation of soft biological tissues. Eng Med 13: 11–14

    Article  PubMed  CAS  Google Scholar 

  • Schoen FJ (1987) Cardiac valve prostheses: review of clinical status and contemporary biomaterials issues. J Biomed Mater Res 21: 91–117

    PubMed  CAS  Google Scholar 

  • Senning A (1966) Aortic valve replacement with fascia lata. Acta Chir Scand 365B (Suppl): 17–20

    Google Scholar 

  • Simenauer PA (1986) Test protocol: interlaboratory comparison of prosthetic heart valve performance testing. US Food and Drug Administration, Rockville, Md.

    Google Scholar 

  • Starr A (1960) Total mitral valve replacement: fixation and thrombosis. Surg Forum-258–260

    Google Scholar 

  • Swanson WM (1984) Relative performance of prosthetic heart valves based on power measurements. Med Instrum 18: 318–325

    PubMed  CAS  Google Scholar 

  • Swanson WM, Clark RE (1982) A simple cardiovascular system simulator: design and performance. J Bioeng 1: 135–145

    Google Scholar 

  • Synder RW (1972) Large deformation of isotropic biological tissue. J Biomech 5: 601–606

    Article  Google Scholar 

  • Thubrikar M, Piepgrass WC, Deck JD, Nolan SP (1980) Stresses of natural versus prosthetic heart valve leaflets in vivo. Ann Thorac Surg 30: 230–239

    Article  PubMed  CAS  Google Scholar 

  • Tindale WB, Black MM, Martin TRP (1982) In vitro evaluation of prosthetic heart valves: Anomalies and limitations. Clin Phys Physiol Meas 3: 115–130

    Article  PubMed  CAS  Google Scholar 

  • Tong P, Fung YC (1976) The stress-strain relationship for the skin. J Biomech 9: 649–657

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge EA, Crofts CE (1987) Pericardial heterograft valves: an assessment of leaflet stresses and their implications for heart valve design. J Biomed Eng 9: 345–356

    Article  PubMed  CAS  Google Scholar 

  • Wada J, Komatsu S, Ikeda K et al. (1969) A new hingeless valve. In: Brewer KA (ed): Prosthetic heart valves. Charles C. Thomas, Springfield, Ill, pp 304–314

    Google Scholar 

  • Walesby R (1983) A surgical assessment of the Starr-Edwards mitral prosthesis. Curr Med Lit 2: 65–67

    Google Scholar 

  • Walker DK, Scotten LN, Modi VJ, Brownlee RT (1980) In vitro assessment of mitral valve prosthesis. J Thorac Cardiovasc Surg 79: 680–688

    PubMed  CAS  Google Scholar 

  • Wieting DW (1969) Dynamic flow characteristics of heart valves. Doctoral Dissertation, University of Texas, Austin

    Google Scholar 

  • Yoganathan AP (1982) Prosthetic heart valves: a study of in vitro performance. Phase I final report. FDA contract no, 223–81–5000 (NTI S no. PB 83–134478 )

    Google Scholar 

  • Yoganathan AP, Corcoran WH, Harrison EC (1979a) In vitro velocity measurements in the vicinity of aortic prostheses. J Biomech 12: 135–152

    Article  PubMed  CAS  Google Scholar 

  • Yoganathan AP, Corcoran WH, Harrison EC (1979b) Pressure drops across prosthetic heart valves under steady and pulsatile flow — in vitro measurements. J Biomech 12: 153–164

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Black, M.M., Drury, P.J. (1994). Mechanical and Other Problems of Artificial Valves. In: Berry, C. (eds) The Pathology of Devices. Current Topics in Pathology, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76846-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76846-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76848-4

  • Online ISBN: 978-3-642-76846-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics