Skip to main content

Explorations of Dopamine and Noradrenaline Activity and Negative Symptoms in Schizophrenia: Concepts and Controversies

  • Conference paper
Negative Versus Positive Schizophrenia

Abstract

Attempts to understand the pathophysiology of negative symptoms took off when Crow (1980a, b) described the Type I and II syndromes of schizophrenia. He proposed that the Type II form was irreversible and nondopaminergic, consisting of negative symptoms, brain atrophy, poor drug response, and outcome; Type I was the reverse, i.e., positive symptoms, absence of brain atrophy (normal ventricle brain ratio, VBR), and excellent antipsychotic drug response, and consisted of a hyperdopaminergic disorder. Mackay (1980) challenged this concept and hypothesized that Type II schizophrenia was a hypodopaminergic, Kraepelinian form of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert M, Friedhoff AJ, Marcos LR, Diamond F (1978) Paradoxical reaction to L-Dopa in schizophrenic patients. Am J Psychiatry 135:1329–1332

    PubMed  CAS  Google Scholar 

  • Andreasen NC (1982) Negative symptoms in schizophrenia: definition and reliability. Arch Gen Psychiatry 39:7

    Google Scholar 

  • Andreasen NC, Smith MR, Jacoby CG, Dennert JW, Olsen SA (1982) Ventricular enlargement in schizophrenia: definition and prevalence. Am J Psychiatry 139:292–298

    PubMed  CAS  Google Scholar 

  • Angrist B, van Kammen DP (1984) CNS stimulants as tools in the study of schizophrenia. Trends Neurosci 7:388–390

    Article  Google Scholar 

  • Angrist B, Rotrosen J, Gershon S (1980) Responses to apomorphine, amphetamine, and neuroleptics in schizophrenic subjects. Psychopharmacology (Berlin) 67:31–38

    Article  CAS  Google Scholar 

  • Angrist B, Burrows GD, Lader M, Lingjaerde O, Sedvall G, Wheatly D (1981) Relationships between responses to dopamine agonists: psychopathology, neuroleptic treatment response, and need for neurleptic maintenance in schizophrenic subjects. In: Angrist B, Peselow E, Rotrosen J, Gershon S (eds) Recent advances in neuropsychopharmacology. Pergamon, Oxford, pp 49–54

    Google Scholar 

  • Angrist B, Peselow E, Rubinstein M, Corwin J, Rotrosen J (1982) Partial improvement in negative schizophrenic symptoms after amphetamine. Psychopharmacology (Berlin) 78:128–130

    Article  CAS  Google Scholar 

  • Beckmann H, Waldmeier P, Lauber J, Gattaz WF (1983) Phenylethylamine and monamine metabolites in CSF of schizophrenics: effects of neuroleptic treatment. J Neurol Transm 57:103–110

    Article  CAS  Google Scholar 

  • Berze J (1914) Die primäre Insuffizienz der psychischen Aktivität. Deuticke, Leipzig

    Google Scholar 

  • Bird M, Kornetsky C (1990) Dissociation of the attentional and motivational effects of pimozide on the threshold for rewarding brain stimulation. Neuropsychopharmacology 3:33–40

    PubMed  CAS  Google Scholar 

  • Bishop RJ, Golden CJ, McInnes WD, Chu C-C, Ruedriçh SL, Wilson J (1983) The BPRS in assessing symptom correlates of cerebral enlargement in acute and chronic schizophrenia. Psychiatry Res 9:225–231

    Article  PubMed  CAS  Google Scholar 

  • Bogerts B, Ashtari M, Degreef G, Alvir JMJ, Bilder RM, Lieberman JA (1990) Reduced temporal limbic structure volumes on magnetic resonance images in first episode schizophrenia. Psychiatry Res 35:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bondy B, Ackenheil M, Birzle W, Elbers R, Frohler M (1984) Catecholamines and their receptors in blood: evidence for alterations in schizophrenia. Biol Psychiatry 19:1377– 1393

    PubMed  CAS  Google Scholar 

  • Bowers MB (1974) Central dopamine turnover in schizophrenic syndromes. Arch Gen Psychiatry 31:50–54

    Article  PubMed  Google Scholar 

  • Bowers MB Jr (1988) Plasma monoamine metabolites in psychotic disorders. Arch Gen Psychiatry 45:564–567

    Article  Google Scholar 

  • Bowers MB, Rozitis A (1974) Regional differences in homo vanillic acid concentrations after acute and chronic administration of antipsychotic drugs. J Pharmacol 26:743–745

    Article  CAS  Google Scholar 

  • Bowers MB, Study RE (1979) Cerebrospinal fluid cyclic amp and acid monoamine metabolites following probenecid: studies in psychiatric patients. Psychopharmacology (Berlin) 62:17–22

    Article  CAS  Google Scholar 

  • Bowers MB, Swigar E, Jatlow PI, Hoffman F, Giocoechea N (1986) Early neuroleptic response in psychotic men and women: correlation with plasma HVA and MHPG. Comp Psychiatry 27:181–185

    Article  Google Scholar 

  • Breier A, Wolkowitz OM, Doran AR, Roy A, Boronow J, Hommer DW, Pickar D (1987) Neuroleptic responsivity of negative and positive symptoms in schizophrenia. Am J Psychiatry 144:1549–1555

    PubMed  CAS  Google Scholar 

  • Bunney BS, DeRiemer S (1982) Effect of clonidine on dopaminergic neuron activity in the substantia nigra: possible indirect mediation by noradrenergic regulation of the serotonergic raphi system. Adv Neurol 35:99–104

    PubMed  CAS  Google Scholar 

  • Bunney WE Jr, Hamburg DA (1963) Methods for reliable longitudinal observation of behavior. Arch Gen Psychiatry 9:280–294

    Article  PubMed  Google Scholar 

  • Carlsson A (1978) Does dopamine have a role in schizophrenia? Biol Psychiatry 13:3–21

    PubMed  CAS  Google Scholar 

  • Carpenter WT, Heinrichs DW, Wagman AMI (1988) Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry 145:578–583

    PubMed  Google Scholar 

  • Carter CJ, Pycock CJ (1980) Behavioural and biochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat. Brain Res 192:163–176

    Article  PubMed  CAS  Google Scholar 

  • Chang W-H, Chen T-Y, Lin S-K, Lung F-W, Lin W-L, Hu W-H, Yeh E-K (1990) Plasma catecholamine metabolites in schizophrenics: Evidence for the two type concept. Biol Psychiatry 27:510–518

    Article  PubMed  CAS  Google Scholar 

  • Connell PH (1958) Amphetamine psychosis. Chapman and Hall, London (Maudsley monograph, no 5)

    Google Scholar 

  • Crow TJ (1980a) Molecular pathology of schizophrenia: more than one disease process? Br Med J 280:66–68

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ (1980b) Positive and negative schizophrenic symptoms and the role of dopamine. Br J Psychiatry 137:383–386

    PubMed  CAS  Google Scholar 

  • Deline A, Hunn C (1990) Effects of single and repeated treatment with antidepressants on apomorphine-induced yawning in the rat: the implications of α1 adrenergic mechanisms in the D2 receptor function. Psychopharmacology (Berlin) 101:62–66

    Article  Google Scholar 

  • Dickinson SL, Gadie B, Tulloch IF (1988) Alpha, and alpha2 adrenoreceptor antagonists differentially influence locomotor and stereotyped behavior induced by d-amphetamine and apomorphine in the rat. Psychopharmacology (Berlin) 96:521–527

    Article  CAS  Google Scholar 

  • Dinan TG, Aston-Jones G (1985) Chronic haloperidol inactivates brain noradrenergic neurons. Brain Res 325:385–388

    Article  PubMed  CAS  Google Scholar 

  • Docherty JP, van Kämmen DP, Siris SG, Marder SR (1978) Stages of onset of schizophrenic psychosis. Am J Psychiatry 135:420–426

    PubMed  CAS  Google Scholar 

  • Doran AR, Boronow J, Weinberger DR, Wolkowitz OM, Breier A, Pickar D (1987) Structural brain pathology in schizophrenia revisited-prefrontal cortex pathology is inversely correlated with cerebrospinal fluid levels of homovanillic acid. Neuropsychopharmacology 1:25–32

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson L, Owman C (1974) Pharmacological characterization of alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro. Circ Res 35:853–849

    Google Scholar 

  • Ellinwood EH Jr (1967) Amphetamine psychosis: a description of the individuals and process. J Nerv Ment Dis 144:273–283

    Article  Google Scholar 

  • Ellinwood EH Jr (1972) Amphetamine psychosis: individuals, settings and sequences. In: Ellinwood EH Jr, Cohen S (eds) Current concepts on amphetamine abuse. US Department of Health, Education and Welfare, Washington (Publication 72–9085)

    Google Scholar 

  • Elsworth JD, Leahy DJ, Roth RH, Redmond DE (1987) Homovanillic acid concentrations in brain, CSF and plasma as indicators of central dopamine function in primates. J Neural Transm 68:51–62

    Article  PubMed  CAS  Google Scholar 

  • Farley IJ, Price KS, McCullough E, Deck JH, Hordynski W, Hornykiewicz O (1978) Norepinephrine in chronic paranoid schizophrenia: above-normal levels in limbic forebrain. Science 200:456–458

    Article  PubMed  CAS  Google Scholar 

  • Feinberg I, Braun M, Koresko RL, Gottlieb F (1969) Stage 4 sleep in schizophrenia. Arch Gen Psychiatry 21:262–266

    Article  PubMed  CAS  Google Scholar 

  • Ferrier IN, Roberts GW, Crow TJ, Johnstone EC, Owens DGC, Lee YC, O’Shaughnessy D, Adrian TE, Polak JM, Bloom SR (1983) Reduced cholecystokinin-like and somatostatin-like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Sci 33:475–482

    Article  PubMed  CAS  Google Scholar 

  • Ferrier IN, Johnstone EC, Crow TJ (1984) Hormonal effects of apomorphine in schizophrenia. Br J Psychiatry 144:349–357

    Article  PubMed  CAS  Google Scholar 

  • Fields RB, van Kammen DP, Peters JL, Rosen J, van Kammen WB, Nugent A, Stipetic M, Linnoila M (1988) Clonidine improves memory function in schizophrenia independently from change in psychosis. Schizophr Res 1:417–423

    Article  PubMed  CAS  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    PubMed  CAS  Google Scholar 

  • Friedhoff AJ (1988) Dopamine as a mediator of a central stabilizing system. Neuropsychopharmacology 1:189–191

    Article  PubMed  CAS  Google Scholar 

  • Ganguli R, Reynolds CF III, Kupfer DJ (1987) Electroencephalographic sleep in young, never-medicated schizophrenics. Arch Gen Psychiatry 44:36–44

    Article  PubMed  CAS  Google Scholar 

  • Garver DL, Yao J, van Kammen DP (1990) Dopamine, HVA and early neuroleptic response. Proc Am Psychiatr Assoc 143:247

    Google Scholar 

  • Gay N, Cottreaux JA, Denoroy L, Tomassi M, Kopp N (1989) Possible increase of dopamine-beta-hydroxylase activity in the locus coeruleus of paranoid schizophrenic patients: a preliminary postmortem study. Psychiatry Res 27:31–38

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J, Hervé D, Tassin JP (1988) Heterologous regulation of receptors on target cells of dopamine neurons in the prefrontal cortex, nucleus accumbens and striatum. Ann NY Acad Sci 137:112–123

    Article  Google Scholar 

  • Goldberg SC (1985) Negative and deficit symptoms in schizophrenia do respond to neuroleptics. Schizophr Bull 11:453–456

    PubMed  CAS  Google Scholar 

  • Goldberg SC, Schooler NR, Mattson N (1967) Paranoid and withdrawal symptoms in schizophrenia: differential symptom reduction over time. J Nerv Ment Dis 145:158–162

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum E (ed) Higher functions of the brain. Handbook of physiology, the nervous system, Sect. 1, vol 5. American Physiological Society, Bethesda, pp 373–417

    Google Scholar 

  • Grenhoff J, Svensson TH (1988) Clonidine regularizes substantia nigra dopamine cell firing. Life Sci 42:2003–2009

    Article  PubMed  CAS  Google Scholar 

  • Gross G (1989) The “basic” symptoms of schizophrenia. Br J Psychiatry [Suppl 7] 177:21–25

    Google Scholar 

  • Groves P, Ryan L, Diana M, Gariano R (1988) Neurophysiological consequences of amphetamine administration. Natl Inst Drug Abuse Monogr Ser 90:213–222

    CAS  Google Scholar 

  • Guelfi GP, Faustman WO, Csernansky JG (1989) Independence of positive and negative symptoms in a population of schizophrenic patients, j Nerv Ment Dis 177:285–290

    Article  PubMed  CAS  Google Scholar 

  • Harvey I, McGuffin P, Williams M, Toone BK (1990) The ventricle-brain ratio (VBR) in functional psychoses: an admixture analysis. Psychiatry Res 35:61–69

    Article  PubMed  CAS  Google Scholar 

  • Hervé S, Le Moal M (1988) Mesencephalic dopaminergic neurons: role in the general economy of the brain. Ann NY Acad Sci 537 :235–253

    Article  Google Scholar 

  • Herz MI, Melville C (1980) Relapse in schizophrenia. Am J Psychiatry 137:801–805

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1982) Brain catecholamine in schizophrenia-a good case for noradrenaline. Nature 299:484–486

    Article  PubMed  CAS  Google Scholar 

  • Houston JP, Mass JW, Bowden CL, Contreras SA, McIntyre KL, Javors MA (1986) Cerebrospinal fluid HVA, central brain atrophy, and clinical state in schizophrenia. Psychiatry Res 19:207–214

    Article  PubMed  CAS  Google Scholar 

  • Janes SM, Mu D, Wemmer D, Smith AJ, Kaur S, Maltby D, Burlingame AL, Klinmans J (1990) A new redox cofactor in eukaryotic enzymes: 6-hydroxydopamine at the active site of bovine serum amine oxidase. Science 248:981–987

    Article  PubMed  CAS  Google Scholar 

  • Jennings WS, Schulz SC, Narasimhachari N, Hamer RM, Friedel RO (1985) Brain ventricular size and CSF monoamine metabolites in an adolescent inpatient population. Psychiatry Res 16:87–94

    Article  PubMed  CAS  Google Scholar 

  • Jimerson DC, Rubinow DR, Ballenger JC, Post RM, Kopin IJ (1984) Cerebrospinal fluid norepinephrine metabolites in depressed patients: new methodologies. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) Catecholamines. Neuropharmacology and central nervous system-therapeutic aspects. Liss, New York, pp 123–129

    Google Scholar 

  • Johnstone E, Owens D, Frith C, Crow T (1986) The relative stability of positive and negative feature in chronic schizophrenia. Br J Psychiatry 150:60–64

    Article  Google Scholar 

  • Karoum F, Karson CN, Bigelow LB, Lawson WB, Wyatt RJ (1987) Preliminary evidence of reduced combined output of dopamine and its metabolites in chronic schizophrenia. Arch Gen Psychiatry 44:604–607

    Article  PubMed  CAS  Google Scholar 

  • Keefe RSE, Mohs RC, Losonczy MF, Davidson M, Silverman JM, Kendler KS, Horvath TB, Nora R, Davis KL (1987) Characteristics of very poor outcome schizophrenia. Am J Psychiatry 144:889–895

    PubMed  CAS  Google Scholar 

  • Kemali D, Maj M, Galderisi S, Salvati A, Starace F, Valente A, Pirozzi R (1986) Clinical, biological, and neuropsychological features associated with lateral ventricular enlargement in DSM-III schizophrenic disorder. Psychiatry Res 21:137–149

    Article  Google Scholar 

  • Kraepelin E (1893) Psychiatrie: ein kurzes Lehrbuch für Studierende und Ärzte. Abel, Leipzig

    Google Scholar 

  • Lake CR, Sternberg DE, van Kämmen DP, Ballenger JC, Ziegler MG, Post RM, Kopin IJ, Bunney WE Jr (1980) Schizophrenia: elevated cerebrospinal fluid norepinephrine. Science 207:331–333

    Article  PubMed  CAS  Google Scholar 

  • Langer AZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362

    Google Scholar 

  • Lehman HE, Hanrahan GE (1954) Chlorpromazine, a new inhibiting agent for psychomotor excitement and manic states. AM A Arch Neurol Psychiatry 71:227–237

    Google Scholar 

  • Levins S (1984) Frontal lobe dysfunctions in schizophrenia. II. Impairments of psychological and brain functions. J Psychiatr Res 18:57–72

    Article  Google Scholar 

  • Lindström LH (1985) Low HVA and normal 5-HIAA CSF levels in drug free schizophrenic patients compared to healthy volunteers: correlations to symptomatology and family history. Psychiatry Res 14:265–273

    Article  PubMed  Google Scholar 

  • Linnoila M, Ninan PT, Scheinin M, Waters RN, Chang WH, Bartko J, van Kämmen DP (1983) Reliability of norepinephrine and major monoamine metabolite measurements in CSF of schizophrenic patients. Arch Gen Psychiatry 40:1290–1294

    Article  PubMed  CAS  Google Scholar 

  • Lohr JB, Jeste DV (1988) Locus coeruleus morphometry in aging and schizophrenia. Acta Psychiatr Scand 77:689–697

    Article  PubMed  CAS  Google Scholar 

  • Losonczy MF, Song IS, Mohs RC, Mathé AA, Davidson M, Davis BM, Davis KL (1986) Correlates of lateral ventricular size in chronic schizophrenia. II. Biological measures. Am J Psychiatry 143:1113–1118

    PubMed  CAS  Google Scholar 

  • Luchins DJ, Lewine RRJ, Meitzer HY (1984) Lateral ventricular size, psychopathology, and medication response in the psychoses. Biol Psychiatry 19:29–44

    PubMed  CAS  Google Scholar 

  • Mackay AVP (1980) Positive and negative schizophrenic symptoms and the role of dopamine. Br J Psychiatry 137:379–383

    Article  PubMed  CAS  Google Scholar 

  • Malas KL, van Kammen DP, Defraites EA, Brown GM, Gold PW (1983) Platelet monoamine oxidase and the growth hormone response to apomorphine in schizophrenia. Biol Psychiatry 18:255–259

    PubMed  CAS  Google Scholar 

  • Marder SP, van Kammen DP, Bunney WE Jr (1979) Prediction drug-free improvement from schizophrenic psychosis. Arch Gen Psychiatry 36:1080–1085

    Article  PubMed  CAS  Google Scholar 

  • Meitzer H (1984) Dopamine and negative symptoms in schizophrenia: critique of the type III hypotheses. In: Alpert M (ed) Controversies in schizophrenia: changes and consistencies. Guilford, New York, pp 110–144

    Google Scholar 

  • Meitzer HY, Kolakowska T, Fang VS, Fogg L, Robertson A, Lewine R, Strahilevitz M, Busch D (1984) Growth hormone and prolactin response to apomorphine in schizophrenia and the major affective disorders. Arch Gen Psychiatry 41:512–519

    Article  Google Scholar 

  • Miller R (1989) Schizophrenia as a progressive disorder: relations to EEG, CT, neuropathological and other evidence. Prog Neurobiol 33:17–44

    Article  PubMed  CAS  Google Scholar 

  • Miller R, Wickens JR, Beninger RJ (1990) Dopamine D-1 and D-2 receptors in relationship to reward and performance; a case for the D-1 receptor for the primary site of the therapeutic action of neuroleptic drugs. Prog Neurobiol 34:143–183

    Article  PubMed  CAS  Google Scholar 

  • Nybäck H, Berggren BM, Hindmarsh T (1983) Cerebroventricular size and cerebrospinal fluid monamine metabolites in schizophrenic patients and healthy volunteers. Psychiatry Res 9:301–308

    Article  PubMed  Google Scholar 

  • Omstein K, Milon H, McRae-Degueurce A, Alvarez C, Berger B, Wurzner HP (1987) Biochemical and radioautographic evidence for dopaminergic afferents of the locus coeruleus originating in the ventral tegmental area. J Neurol Transm 70:183–191

    Article  Google Scholar 

  • Ota T, Maeshiro H, Ishido H, Shimizu Y, Uchida R, Toyoshima H, Takazawa A, Motomura H, Noguchi T (1987) Treatment resistant chronic psychopathology and CT scans in schizophrenia. Acta Psychiatr Scand 75:415–427

    Article  PubMed  CAS  Google Scholar 

  • Pandurangi AK, Bilder RM, Rieder RO, Mukherjee S, Hamer RM (1988) Schizophrenic symptoms and deterioration-relation to computed tomographic findings. J Nerv Ment Dis 176:200–206

    Article  PubMed  CAS  Google Scholar 

  • Peters J, van Kammen DP, Gelernter J, Yao J, Shaw D (1990) Neuropeptide Y like immuno-reactivity in schizophrenia: relationships with clinical measures. Schizophr Res 3: 287–294

    Article  PubMed  CAS  Google Scholar 

  • Pinder RM, Brogden RN, Sawyer PR, Spencer R, Avery GS (1976) Pimozide: a review of its pharmacological properties and therapeutic uses in psychiatry. Drugs 12:1–40

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Fink E, Carpenter WT, Goodwin FK (1975) Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch Gen Psychiatry 32:1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Bunney WE Jr, van Kammen DP, Ballenger JC, Lake CR, Lerner P, Sternberg DE, Uhde PW, Goodwin FK (1981) Cerebrospinal fluid norepinephrine and dopamine-beta-hydroxylase in affective illness and schizophrenia. In: Angrist B, Burrows GD, Lader M, Lingjaerde O, Sedvall G, Wheatley D (eds) Recent advances in neuropsychopharmacology. Pergamon, New York, pp 283–288

    Google Scholar 

  • Pycock CJ, Kerwin RW, Carter CJ (1980) Effect of cortical dopamine terminals on subcortical dopamine in rats. Nature 286:74–77

    Article  PubMed  CAS  Google Scholar 

  • Randrup A, Munkvad I (1974) Pharmacology and physiology of stereotyped behavior. J Psychiatr Res 11:1–10

    Article  PubMed  CAS  Google Scholar 

  • Reisine TD, Chesselet MF, Lubetzki C, Cheramy A, Glowinski J (1981) Striatal β-adrenergic receptors regulate dopamine release. Soc Neurosci Abstr 8:526

    Google Scholar 

  • Reubenstein M, Schinder AF, Gershanik O, Stefano FJE (1989) Positive interaction between alpha-1 adrenergic and dopamine-2 receptors in locomotor activity of normo and supersensitive mice. Life Sci 44:337–346

    Article  Google Scholar 

  • Rieder RO, Donnelly EF, Herdt JR, Waldman IN (1979) Sulcal prominence in young chronic schizophrenic patients: CT scan findings associated with impairment on neuropsychological tests. Psychiatry Res 1:1–8

    Article  PubMed  CAS  Google Scholar 

  • Rosen WG, Mohs RC, Johns CA, Small NS, Kendler KS, Horvath TB, Davis KL (1984) Positive and negative symptoms in schizophrenia. Psychiatry Res 13:277–284

    Article  PubMed  CAS  Google Scholar 

  • Shepherd M, Watt D, Falloon I, Smeeton N (1989) The natural history of schizophrenia: a five year follow-up study of outcome and prediction in a representative sample of schizophrenics. Psychol Med [Suppl] 15

    Google Scholar 

  • Snyder SH (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 33:197–202

    Google Scholar 

  • Stein L, Wise CD (1971) Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 5-hydroxydopamine. Science 171:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Sternberg DE, van Kammen DP, Lake CR, Ballenger JC, Marder SR, Bunney WE Jr (1981) The effect of pimozide on CSF norepinephrine in schizophrenia. Am J Psychiatry 138:1045–1051

    PubMed  CAS  Google Scholar 

  • Stone EA, Ariano M (1990) Are glial cells targets of the central noradrenergic system? A review of the evidence. Brain Res Rev 14:297–309

    Article  Google Scholar 

  • Svensson TH (1987) Peripheral, autonomic regulation of locus coeruleus noradrenergic neurons in the brain: putative implications for psychiatry and psychopharmacology. Psychopharmacology (Berlin) 92:1–7

    Article  CAS  Google Scholar 

  • Swerdlow NR, Koob GF (1989) Norepinephrine stimulates behavioral activation in rats following depletion of nucleus accumbens dopamine. Pharmacol Biochem Behav 33:595–599

    Article  PubMed  CAS  Google Scholar 

  • Szymanski HV, Simon JC, Gutterman N (1983) Recovery from schizophrenic psychosis. Am J Psychiatry 140:335–338

    PubMed  CAS  Google Scholar 

  • Takahashi R, Inaba Y, Inanaga K, Kato N, Kumashiro H, Nishimura T, Okuma T, Otsuki S, Sakai T, Sato T, Shimazono Y (1981) CT scanning and the investigation of schizophrenia. In: Perris C, Struwe G, Jansson B (eds) Biological psychiatry. Elsevier/North-Holland, Amsterdam, pp 259–268

    Google Scholar 

  • Tandon R, Greden JF (1989) Cholinergic hyperactivity and negative schizophrenic symptoms. A model of cholinergic/dopaminergic interactions in schizophrenia. Arch Gen Psychiatry 46:745–753

    Article  PubMed  CAS  Google Scholar 

  • Tandon R, Goldman RS, Goodson JA, Greden JF (1990) Mutability and relationship between positive and negative symptoms during neuroleptic treatment in schizophrenia. Biol Psychiatry 27:1323–1326

    Article  PubMed  CAS  Google Scholar 

  • Tatetsu S (1963) Methamphetamine psychosis. Folia Psychiatr Neurol Jpn [Suppl] 7:377–380

    Google Scholar 

  • van der Heyden P, Ebinger G, Kanarek L (1986) Vauquelin, epinephrine and norepinephrine stimulation of adenylate cyclase in bovine retina homogenate: evidence for interaction with the D1 receptor. Life Sci 38:1221–1228

    Article  Google Scholar 

  • van Kammen DP, Antelman S (1984) Impairment of noradrenergic transmission in schizophrenia? A minireview. Life Sci 34:1403–1413

    Article  Google Scholar 

  • van Kammen DP, Boronow J (1988) Dextro-amphetamine diminishes negative symptoms in schizophrenia. Int J Clin Psychopharmacol 3:111–121

    Article  Google Scholar 

  • van Kammen DP, Gelernter JA (1987) Biochemical instability in schizophrenia. II. The serotonin and gamma-aminobutyric acid systems. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 753–758

    Google Scholar 

  • van Kammen DP, Kelley M (1991) Dopamine and norepinephrine activity in schizophrenia. Schizophr Res 4:173–191

    Article  PubMed  Google Scholar 

  • van Kammen DP, Sternberg DE (1980) CSF studies in schizophrenia. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, vol 1. Plenum, New York, pp 719–742

    Google Scholar 

  • van Kammen DP, Bunney WE Jr, Docherty JP, Marder SR, Ebert MH, Rosenblatt JE, Rayner JN (1982a) D-amphetamine-induced heterogeneous changes in psychotic behavior in schizophrenia. Am J Psychiatry 139:991–997

    PubMed  Google Scholar 

  • van Kammen DP, Docherty JP, Marder SR, Schulz SC, Dalton L, Bunney WE Jr (1982b) Antipsychotic effects of pimozide in schizophrenia. Arch Gen Psychiatry 39:261–266

    Article  PubMed  Google Scholar 

  • van Kammen DP, Sternberg DE, Hare TA, Waters R, Bunney WE Jr (1982c) CSF levels of gamma-aminobutyric acid in schizophrenia. Arch Gen Psychiatry 39:91–97

    Article  PubMed  Google Scholar 

  • van Kammen DP, Mann LS, Sternberg DE, Scheinin M, Ninan PT, Marder SR, van Kammen WB, Rieder RO, Linnoila M (1983) Dopamine-beta-hydroxylase activity and homovanillic acid in spinal fluid of schizophrenics with brain atrophy. Science 220:974– 977

    Article  PubMed  Google Scholar 

  • van Kammen DP, Rosen J, Peters J, Fields R, van Kammen WB (1985) Are there state-dependent markers in schizophrenia? Psychopharmacol Bull 21:497–502

    PubMed  Google Scholar 

  • van Kammen DP, van Kammen WB, Mann LS, Seppala T, Linnoila M (1986) Dopamine metabolism in the cerebrospinal fluid of drug-free schizophrenic patients with and without cortical atrophy. Arch Gen Psychiatry 43:978–983

    Article  PubMed  Google Scholar 

  • van Kammen DP, Hommer DW, Malas KL (1987) Effect of pimozide on positive and negative symptoms in schizophrenic patients: are negative symptoms state dependent? Neuropsychobiology 18:113–117

    Article  PubMed  Google Scholar 

  • van Kammen DP, Peters J, van Kammen WB, Nugent A, Goetz KL, Yao J, Linnoila M (1989a) CSF norepinephrine in schizophrenia is elevated prior to relapse after haloperidol withdrawal. Biol Psychiatry 26:176–188

    Article  PubMed  Google Scholar 

  • van Kammen DP, Peters JL, Rosen J, van Kammen WB, McAdam D, Linnoila M (1989b) Clonidine treatment in schizophrenia: can we predict treatment response? Psychiatry Res 27:297–311

    Article  PubMed  Google Scholar 

  • van Kammen DP, Peters J, Yao J, van Kammen WB, Neylan T, Shaw D, Linnoila M (1990) Norepinephrine in acute exacerbations of chronic schizophrenia: negative symptoms revisited. Arch Gen Psychiatry 47:161–168

    Article  PubMed  Google Scholar 

  • van Putten T, Mutalipassi LR, Malkin MD (1974) Phenothiazine-induced decompensation. Arch Gen Psychiatry 30:102–105

    Article  PubMed  Google Scholar 

  • van Putten T, Marder SR, Aravagiri M, Chabert N, Mintz J (1989) Plasma homovanillic acid as a predictor of response to fluphenazine treatment. Psychopharmacol Bull 1:89–91

    Google Scholar 

  • Warkentin S, Nilsson A, Risberg J, Karlson S, Flekköy K, Franzén G, Gustafson L, Rodriguez G (1990) Regional cerebral blood flow in schizophrenia: repeated studies during a psychotic episode. Psychiatry Res 35:27–38

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    Article  PubMed  CAS  Google Scholar 

  • Wing JK (1989) The concept of negative symptoms. Br J Psychiatry [Suppl 7] 155:10–14

    Google Scholar 

  • Wise RA (1988) Psychomotor stimulant properties of addictive drugs. Ann NY Acad Sci 537:228–234

    Article  PubMed  CAS  Google Scholar 

  • Wyatt RJ (1986) The dopamine hypothesis: variations on a theme. II. Psychopharmacol Bull 22:923–927

    PubMed  CAS  Google Scholar 

  • Wyatt RJ, Fawcett R, Kirch D (1989) A possible animal model of defect state schizophrenia. In: Schulz SC, Tamminga CA (eds) Schizophrenia: scientific progress. Oxford University Press, New York, pp 184–189

    Google Scholar 

  • Yamamoto K-I, Arai H, Nakayama S (1990) Skin conductance response after 6-hydroxy-dopamine lesion of central noradrenaline system. Biol Psychiatry, 27/28:151–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Kammen, D.P., Mouton, A., Kelley, M., Breeding, W., Peters, J. (1991). Explorations of Dopamine and Noradrenaline Activity and Negative Symptoms in Schizophrenia: Concepts and Controversies. In: Marneros, A., Andreasen, N.C., Tsuang, M.T. (eds) Negative Versus Positive Schizophrenia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76841-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76841-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76843-9

  • Online ISBN: 978-3-642-76841-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics