Detection of Minimal Residual Leukemia by Polymerase Chain Reactions

  • T. E. Hansen-Hagge
  • S. Yokota
  • J. W. G. Janssen
  • C. R. Bartram
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 35)


Disease recurrence following successful remission induction by polychemothe-rapy or bone marrow transplantation represents a major clinical problem in the treatment of leukemia patients. Sensitive methods for the identification of neoplastic cells escaping therapeutic interventions and potentially causing relapse are important for the monitoring of therapeutic effectiveness. The in vitro amplification of genomic or complementary deoxyribonucleic acid (cDNA) target sequences by polymerase chain reaction [1] has opened new avenues toward the detection of minimal residual leukemic cells at frequencies of 1:10000 to 1:1000000. In the following we will briefly summarize our recent experience with the application of polymerase chain reaction (PCR) strategies to patients with chronic myelocytic leukemia (CML) and acute lymphoblastic leukemia (ALL) in complete remission according to clinical and laboratory parameters.


Bone Marrow Transplantation Chronic Myeloid Leukemia Minimal Residual Disease Polymerase Chain Reaction Analysis Clinical Relapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  2. 2.
    Riehm H, Gadner H, Henze G, Kornhuber B, Lampert F, Niethammer D, Reiter A, Schellong G (1990) Results and significance of six randomized trials in four consecutive ALL-BFM studies. In: Büchner T, Schellong G, Hiddemann W, Ritter J (eds) Acute leukemias II Prognostic factors and treatment strategies. Springer, Berlin Heidelberg New York, pp 439–450Google Scholar
  3. 3.
    Arnold R, Bartram CR, Heinze B, Carbonell F, Wiesneth M, Hertenstein B, Schmeiser T, Heit W, Kubanek B, Heimpel H (1989) Evaluation of remission state in chronic myeloid leukemia patients after bone marrow transplantation using cytogenetic and molecular genetic approaches. Bone Marrow Transplant 4:389–392PubMedGoogle Scholar
  4. 4.
    Hermans A, Gow J, Selleri L, von Lindern M, Hagemeijer A, Wiedemann LM, Grosveld G (1988) bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia 2:728–733Google Scholar
  5. 5.
    Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick FP (1988) Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 85:5698–5702PubMedCrossRefGoogle Scholar
  6. 6.
    Morgan GJ, Hughes T, Janssen JWG, Gow J, Guo AP, Goldman JM, Wiedemann LM, Bartram CR (1989) Polymerase chain reaction for detection of residual leukaemia. Lancet 1:928–929PubMedCrossRefGoogle Scholar
  7. 7.
    Hansen-Hagge TE, Yokota S, Bartram CR (1989) Detection of minimal residual disease in acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor δ chain sequences. Blood 74:1762–1767Google Scholar
  8. 8.
    Kurzrock R, Gutterman JU, Talpaz M (1988) The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 319:990–998PubMedCrossRefGoogle Scholar
  9. 9.
    Goldman JM, Gale RP, Horowitz MM, Biggs JC, Champlin RE, Gluckman E, Hoffman RG, Jacobsen SJ, Marmont AM, McGlave PB, Messner HA, Rimmt A, Rozman C, Speck B, Tura S, Weiner RS, Bortin MM (1988) Bone marrow transplantation for chronic myelogenous leukemia in chronic phase: increased risk of relapse associated with T cell depletion. Ann Intern Med 108:806–814PubMedGoogle Scholar
  10. 10.
    Bartram CR, Janssen JWG, Schmidtberger M, Lyons J, Arnold R (1989) Minimal residual leukaemia in chronic myeloid leukaemia after T-cell depleted bone marrow transplantation. Lancet 1:1260PubMedCrossRefGoogle Scholar
  11. 11.
    Roth MS, Antin JH, Bingham EL, Ginsburg D (1989) Detection of Philadelphia chromosome positive cells by the polymerase chain reaction following bone marrow transplant for chronic myelogenous leukemia. Blood 74:882–885PubMedGoogle Scholar
  12. 12.
    Lange W, Snyder DS, Castro R, Rossi JJ, Blume KG (1989) Detection by enzymatic amplification of bcr-abl mRNA in peripheral blood and bone marrow cells of patients with chronic myelogenous leukemia. Blood 73:1735–1741PubMedGoogle Scholar
  13. 13.
    Gabert J, Thuret I, Lafage M, Carcassone Y, Maraninchi D, Mannoni P (1989) Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukaemia patients after bone-marrow transplantation. Lancet 2:1125–1128PubMedCrossRefGoogle Scholar
  14. 14.
    Sawyers CL, Timson L, Kawasaki ES, Clark SS, Witte ON, Champlin R (1990) Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci USA 87:563–567PubMedCrossRefGoogle Scholar
  15. 15.
    Delfau MH, Kerckaert JP, d’Hooghe MC, Fenaux P, Lai JL, Jouet JP, Grandchamp B (1990) Detection of minimal residual disease in chronic myeloid leukemia patients after bone marrow transplantation by polymerase chain reaction. Leukemia 4:1–5PubMedGoogle Scholar
  16. 16.
    Pignon JM, Henni T, Amselem S, Vidaud M, Duquesnoy P, Vernant JP, Kuentz M, Cordonnier C, Rochant H, Goossens M (1990) Frequent detection of minimal residual disease by use of the polymerase chain reaction in long-term survivors after bone marrow transplantation for chronic myeloid leukemia. Leukemia 4:83–86PubMedGoogle Scholar
  17. 17.
    Hughes T, Janssen JWG, Morgan G, Martiat P, Saglio G, Pignon JM, Pignatti FP, Mills K, Keating A, Gluckman E, Bartram CR, Goldman JM (1990) False-positive results with PCR to detect leukaemia-specific transcript. Lancet 1:1037–1038CrossRefGoogle Scholar
  18. 18.
    D’Auriol L, MacIntyre E, Galibert F, Sigaux F (1989) In vitro amplification of T cell γ gene rearrangements: a new tool for the assessment of minimal residual disease in acute lymphoblastic leukemias. Leukemia 3:155–158PubMedGoogle Scholar
  19. 19.
    Yamada M, Hudson S, Tournay O, Bittenbender S, Shane SS, Lange B, Tsujimoto Y, Caton AJ, Rovera G (1989) Detection of minimal disease in hematopoietic malignancies of the B cell lineage by using third-complementarity-determining region (CDR-III) specific probes. Natl Acad Sci USA 86:5123–5127CrossRefGoogle Scholar
  20. 20.
    Hara J, Benedict SH, Champagne E, Takihara Y, Mak TW, Minden M (1988) T cell receptor δ gene rearrangements in acute lymphoblastic leukemia. J Clin Invest 82:1974–1982PubMedCrossRefGoogle Scholar
  21. 21.
    Griesinger F, Greenberg JM, Kersey JH (1989) T-cell-receptor gamma and delta rearrangements in hematologic matlig-nancies: relationship to lymphoid differentiation. J Clin Invest 84:506–516PubMedCrossRefGoogle Scholar
  22. 22.
    Dyer MJS (1989) T cell receptor δ/α rearrangements in lymphoid neoplasms. Blood 74:1073–1083PubMedGoogle Scholar
  23. 23.
    Asou N, Hattori T, Matsuoka M, Kawano F, Takatsuki K (1989) Rearrangements of T-cell antigen receptor δ chain gene in hematologic neoplasms. Blood 74:2707–2712PubMedGoogle Scholar
  24. 24.
    Loiseau P, Guglielmi P, Le Paslier D, Maclntyre E, Gessain A, Bories JC, Flandrin G, Chen Z, Sigaux F (1989) Rearrangements of the T cell receptor δ gene in T acute lymphoblastic leukemia cells are distinct from those occurring in B lineage acute lymphoblastic leukemia and preferentially involve one Vδ gene segment. J Immunol 142:3305–3311PubMedGoogle Scholar
  25. 25.
    Maclntyre E, d’Auriol L, Amesland F, Loiseau P, Chen Z, Boumsell L, Galibert F, Sigaux F (1989) Analysis of junctional diversity in the preverential Vδ1−Jδ1 rearrangement of fresh T-acute lymphoblastic leukemia cells by in vitro gene amplification and direct sequencing. Blood 74:2053–2061Google Scholar
  26. 26.
    Biondi A, di Celle PF, Rossi Y, Casorati G, Matullo G, Guidici G, Foa R, Migone N (1990) High prevalence of T-cell receptor Vdelta 2-(d)-Ddelta 3 or Ddelta 1/2-D-delta 3 rearrangements in B-precursor acute Lymphoblastic leukemias. Blood 75:1834–1840PubMedGoogle Scholar
  27. 27.
    Yokota S, Hansen-Hagge TE, Bartram CR (1991) T-cell receptor δ gene recombination in common acute lymphoblastic leukemia: preferential usage of Vδ2 and frequent involvement of the Jα cluster. Blood 77:141–148PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • T. E. Hansen-Hagge
  • S. Yokota
  • J. W. G. Janssen
  • C. R. Bartram
    • 1
  1. 1.Section of Molecular Biology, Department of Pediatrics IIUniversity of UlmGermany

Personalised recommendations