Advertisement

Formal Approaches to Concurrency

  • Wilfried Brauer
Conference paper
Part of the NATO ASI Series book series (volume 79)

Abstract

An introduction to the two main approaches to the theory of concurrent distributed systems is given: the Milner/Hoare theory of CCS and TCSP and the theory of Petri nets. We define a general abstract programming language GAP which encompasses practically all aspects of CSS, TCSP and related formalisms and give a step failures semantics for it. We introduce place/transition nets and show how GAP can be modelled by Petri nets. Moreover we report on other semantics notions for abstract programming languages and Petri nets and about techniques for modular construction and refinement of Petri nets.

Keywords

Petri nets process algebras CCS TCSP transition systems bisimulation interleaving operational semantics step failures semantics refinement modular construction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bar85]
    H. P. Barendregt. The Lambda-CalculusIts Syntax and Semantics. North-Holland Publ. Comp., Amsterdam 1985.Google Scholar
  2. [BC91]
    L. Bernardinello, F. De Cindio. A survey of basic net models and modular net classes. To appear in: G. Rozenberg (ed.) Advances in Petri Nets 1990, LNCS, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1991.Google Scholar
  3. [BF88]
    E. Best and C. Fernandez. Nonsequential Processes. EATCS Monographs on Theoretical Computer Science, vol. 13, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.MATHGoogle Scholar
  4. [BGV91]
    W. Brauer, R. Gold and W. Vogler. Behaviour and equivalence preserving refinements of Petri nets. To appear in: G. Rozenberg (ed.) Advances in Petri Nets 1990, LNCS, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1991.Google Scholar
  5. [BHR84]
    S. D. Brookes, C. A. R. Hoare and A. W. Roscoe. A theory of communicating sequential processes. J. ACM 31:560–599, 1984.CrossRefMATHMathSciNetGoogle Scholar
  6. [Bra84]
    W. Brauer. How to play the token game. Petri Net Newsletter, 16:3–13, 1984.Google Scholar
  7. [Bra87]
    W. Brauer. Carl Adam Petri and informatics. In: G. Rozenberg, K. Voss and H. Genrich (eds.), Concurrency and Nets, pp. 13–21. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1987.CrossRefGoogle Scholar
  8. [Bra90]
    W. Brauer. Graphs, automata, Petri nets — Prom sequential to distributed and concurrent systems -. In: H. Schwärtzel, I. Mizin (eds.) Advanced Information Processing, pp. 15–28, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1990.Google Scholar
  9. [Bro83]
    S. D. Brookes. A Model for Communicating Sequential Processes. Rpt. CMU-CS-83-149. Ph.D.thesis, Carnegie-Mellon Univ., 1983.Google Scholar
  10. [BRR87]
    W. Brauer, W. Reisig, and G. Rozenberg, (eds.) Petri Nets, Parts I and II. LNCS vol. 254 and 255, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1987.Google Scholar
  11. [CH74]
    R. H. Campbell and A. N. Habermann. The specification of process synchronization by path expressions. LNCS vol. 16, pp. 89–102, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1974.Google Scholar
  12. [CJK88]
    M. P. Chytil, L. Janiga, and V. Koubek, (eds.) Mathematical Foundations of Computer Science 1988. LNCS vol. 324, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.MATHGoogle Scholar
  13. [Die90]
    V. Diekert. Combinatorics on Traces with Applications to Petri Nets and Replacement Systems. (Habilitationsschrift, TU München), LNCS vol. 454, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1990.Google Scholar
  14. [DMM89]
    P. Degano, J. Meseguer, and U. Montanari. Axiomatizing net computations and processes. In: Proc. 4th Ann. Symp. on Logic in Computer Science (LICS), Asilomar, Ca., USA, June 5–8 1989.Google Scholar
  15. [GG89]
    R. van Glabbeek and U. Goltz. Partial order semantics for refinement of actions — neither necessary nor always sufficient but appropriate when used with care. In: EATCS Bull No. 88, pp. 154–163, June 1989.Google Scholar
  16. [Gol88]
    U. Goltz. Über die Darstellung von CCS-Programmen durch Petrinetze. GMD-Bericht, Nr. 172, Oldenburg-Verlag, München, Wien 1988. see also [CJK88], pp. 339–350.Google Scholar
  17. [HBR81]
    C. A. R. Hoare, S. D. Brookes and A. W. Roscoe. A theory of communicating sequential processes. Techn. monograph PRG-16, Oxford Univ., Progr. Research Group, 1981.Google Scholar
  18. [Hoa78]
    C. A. R. Hoare. Communicating sequential processes. Comm. ACM, 21:666–677, 1978.CrossRefMATHGoogle Scholar
  19. [Inm88]
    Inmos Ltd. OCCAM 2 Reference Manual, Prentice-Hall, 1988.Google Scholar
  20. [Kie86]
    A. Kiehn On the Concurrent Behaviour of Petri Nets. Techn. Report FBI-HH-B-120/86, Fachbereich Informatik, Universität Hamburg, 1986.Google Scholar
  21. [Kie88]
    A. Kiehn. On the interrelation between synchronized and nonsynchronized behaviour of Petri nets. J. Inf. Proc. Cybern. (ELK), 24:3–18, 1988.MATHMathSciNetGoogle Scholar
  22. [Kie89]
    A. Kiehn. A structuring mechanism for Petri nets. Report TUM-I 8902, TU München, 1989.Google Scholar
  23. [Kie90]
    A. Kiehn. Petri net systems and their closure properties. In: G. Rozenberg (ed.) Advances in Petri Nets 1989, LNCS vol. 424, pp. 306–328, Springer-Verlag Berlin, Heidelberg, New York, Tokyo, 1990.Google Scholar
  24. [LC75]
    P. E. Lauer and R. H. Campbell. Formal semantics for a class of high-level primitives for coordinating concurrent processes. Acta Informatica 5, pp. 247–332, 1975.CrossRefMathSciNetGoogle Scholar
  25. [May83]
    OCCAM, SIGPLAN Notices 18, 4:69–79, 1983.CrossRefGoogle Scholar
  26. [Mil80]
    R. Milner. A Calculus of Communicating Systems. LNCS vol. 92, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1980.MATHGoogle Scholar
  27. [Mil85]
    R. Milner. Lectures on a calculus of communicating systems. In: S. D. Brookes et. al., (eds.), Seminar on Concurrency, LNCS vol. 197, pp. 197–220. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.Google Scholar
  28. [Par81]
    D. Park. Concurrency and automata on infinite sequences. In: P. Deussen (ed.), Proc. 5th GI Conf. on Theoret. Comp. Science, LNCS vol. 104, pp. 167–183, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1981.Google Scholar
  29. [Plo81]
    G. D. Plotkin. A structural approach to operational semantics. Aarhus Univ. Rept. DAIMI FN-19, 1981.Google Scholar
  30. [Roz88]
    G. Rozenberg, (ed.) Advances in Petri Nets 1988. LNCS vol. 340, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.MATHGoogle Scholar
  31. [Tau88]
    D. Taubner. The Finite Representation of CCS and TCSP Programs by Automata and Petri Nets. (Dissertation, TU München 1988) LNCS vol. 369, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1989.Google Scholar
  32. [Tra88]
    B. A. Trakhtenbrot. Comparing the Church and the Turing approaches: Two prophetical messages. In: R. Herken (ed.) The Universal Turing Machine, A Half-Century Survey, pp. 603–630. Kammerer & Unverzagt, Hamburg, Berlin and Oxford University Press, Oxford, 1988.Google Scholar
  33. [TV89]
    D. Taubner and W. Vogler. Step failures semantics and a complete proof system. Acta Informatica 27:125–156, 1989.CrossRefMATHMathSciNetGoogle Scholar
  34. [Vog89]
    W. Vogler. Failures semantics and deadlocking of modular Petri nets. Acta Informatica 26:333–348, 1989.MATHMathSciNetGoogle Scholar
  35. [Vog90]
    W. Vogler. Failures semantics of Petri nets and the refinement of places and transitions. Techn. Report TUM-19003 Inst. f. Informatik, TU München, 1990.Google Scholar
  36. [Vog91]
    W. Vogler. Bisimulation and action refinement. In: C. Choffrut, R. Jantzen (eds.) Proc. STACS 91, LNCS, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Wilfried Brauer
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchen 2Germany

Personalised recommendations