Skip to main content

An Efficient Parallel Ray Tracing Scheme for Highly Parallel Architectures

  • Chapter
Advances in Computer Graphics Hardware V

Part of the book series: EurographicSeminars ((FOCUS COMPUTER))

Abstract

The production of realistic image generated by computer requires a huge amount of computation and a large memory capacity. The use of highly parallel computers allows this process to be performed faster. Distributed memory parallel computers (DMPCs), such as hypercubes or transputer-based machines, offer an attractive performance/cost ratio when the load balancing has been balance and the partition of the data domain has been performed. This paper presents a parallel ray tracing algorithm for DMPC using a Shared Virtual Memory (SVM) which solves these two classical problems. This algorithm has been implemented on a hypercube iPSC/2 and results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Almasi and A. Gottlieb.: Highly Parallel Computing. ISBN 0–8053–0177–1. Benjamin Cummings, 1983.

    Google Scholar 

  2. B. Arnaldi, T. Priol, and K. Bouatouch.: A new space subdivision for ray tracing CSG modelled scenes. The Visual Computer, 3 (2): 98–108, August 1987.

    Article  Google Scholar 

  3. D. Badouel.: Schémas d’exécution pour les machines parallèles à mémoire distribuée. Une étude de cas: le lancer de rayon. PhD thesis, Université de Rennes I - IFSIC, Rennes, October 1990.

    Google Scholar 

  4. D. Badouel, K. Bouatouch, and T. Priol.: Ray tracing on distributed memory parallel computers: strategies for distributing computations and data. In S. Whitman, editor, Parallel Algorithms and architectures for 3D Image Generation, pages 185–198. ACM Siggraph’90 Course 28, August 1990.

    Google Scholar 

  5. R. Bisiani and M. Ravishankar.: Plus: A distributed shared-memory system. In 17th International Symposium on Computer Architecture, May 1990.

    Google Scholar 

  6. R. Bisiani and M. Ravishankar.: Programming the PLUS Distributed-Memory System. In Fifth Distributed Memory Computing Conference, 1990.

    Google Scholar 

  7. L. Bomans and D. Roose.: Communication Benchmarks for the iPSC/2. In F. André and J.P. Verjus, editors, Hypercube and Distributed Computers, pages 93–103, Rennes, France, October 1989. INRIA.

    Google Scholar 

  8. K. Bouatouch, M. O. Madani, T. Priol, and B. Arnaldi.: A new algorithm of space tracing using a CSG model. In Eurographics’87, August 1987.

    Google Scholar 

  9. C. Bouville, R. Brusq, J. L. Dubois, and I. Marchai.: Synthèse d’images par lancer de rayons: algorithmes et architecture. Acta Electronica, 26 (3–4): 249–259, 1984.

    Google Scholar 

  10. E. Caspary and I. D. Scherson.: A self balanced parallel ray tracing algorithm. In Parallel Processing for Computer Vision and Display,UK, January 1988. University of Leeds.

    Google Scholar 

  11. J. G. Cleary, B. Wyvill, G. Birtwistle, and R. Vatti.: Multiprocessor ray tracing. Research Report 83/128/17, University of Calgary, October 1983.

    Google Scholar 

  12. R. L. Cook and K. E. Torrance.: A reflectance model for computer graphics. ACM Transactions on Graphics, 1 (1): 7–24, January 1982.

    Article  Google Scholar 

  13. M. Dippé and J. Swensen.: An adaptative subdivision algorithm and parallel architecture for realistic image synthesis. In SIGGRAPH’8.4, pages 149–157, New York, 1984.

    Google Scholar 

  14. A. Fujimoto, T. Tanaka, and K. Iwata.: ARTS: Accelerated ray_tracing system. IEEE Computer Graphics and Applications, 6 (4): 16–26, April 1986.

    Article  Google Scholar 

  15. A. S. Glassner.: Space subdivision for fast ray tracing. IEEE Computer Graphics and Applications, 4 (10): 15–22, October 1984.

    Google Scholar 

  16. J. Goldsmith and J. Salmon.: Automatic creation of object hierarchies for ray tracing. IEEE Computer Graphics and Applications, pages 14–20, May 1987.

    Google Scholar 

  17. S. Green and D. Paddon.: Exploiting coherence for multiprocessor ray tracing. IEEE Computer Graphics and Applications, 6: 12–26, November 1989.

    Article  Google Scholar 

  18. S. Green and D. Paddon.: A highly flexible multiprocessor solution for ray tracing. Visual Computer, 5 (6): 62–73, March 1990.

    Article  Google Scholar 

  19. S. Green, D. Paddon, and E. Lewis.: A parallel algorithm and tree-based computer architecture for ray traced computer graphics. In Parallel Processing for Computer Vision and Display,UK, January 1988. University of Leeds.

    Google Scholar 

  20. E. Haines.: A proposal for standard graphics environments. IEEE Computer Graphics and Applications, 7 (11): 3–5, November 1987.

    Article  Google Scholar 

  21. R. Hall and D. Greenberg.: A testbed for realistic image synthesis. IEEE Computer Graphics and Applications, 3 (8): 10–20, November 1983.

    Article  Google Scholar 

  22. D. Jevans.: Optimistic multi-processor ray tracing. In em Computer Graphics 1989 (Proceedings of CGI’89), pages 507–522, Leeds, 1989.

    Google Scholar 

  23. M. Kaplan.: Space-tracing, a constant time ray tracer. In SIGGRAPH’85 tutorial on the uses of spatial coherence in ray tracing, 1985.

    Google Scholar 

  24. T. Kay and J. Kajiya.: Ray tracing complex scenes. ACM Computer Graphics, 20 (4): 269–278, August 1986.

    Article  Google Scholar 

  25. H. Kobayashi, T. Nakamura, and Y. Shigei.: A strategy for mapping parallel ray-tracing into a hypercube multiprocessor system. In Computer Graphics International’88, pages 160–169. Computer Graphics Society, May 1988.

    Google Scholar 

  26. Z. Lahjomri.: Mise en oeuvre d’une mémoire virtuelle distribuée sur l’iPSC/2. Rapport de DEA. Institut de Formation Supérieure en Informatique et Communication ( IFSIC ). Rennes, September 1990.

    Google Scholar 

  27. K. Li and R. Schaefer.: A hypercube shared virtual memory system. In 1989 International Conference on Parallel Processing, pages 125–132, 1989.

    Google Scholar 

  28. T. Naruse, M. Yoshida, T. Takahashi, and S. Naito.: Sight: A dedicated computer graphics machine. Computer Graphics Forum, 6 (4): 327–334, 1987.

    Article  Google Scholar 

  29. K. Nemoto and T. Omachi.: An adaptative subdivision by sliding boundary surfaces for fast ray tracing. In Graphics Interface’86, pages 43–48, May 1986.

    Google Scholar 

  30. II. Nishimura, H. Ohno, T. Kawata, I. Shirakawa, and K. Omuira.: Links-1: A parallel pipelined multimicrocomputer system for image creation. In Proc. of the 10th Symp. on Computer Architecture, pages 387–394, 1983.

    Google Scholar 

  31. M. Potmesil and E. Hoffert.: The pixel machine: A parallel image computer. In SIGGRAPH’89,Boston, 1989. ACM.

    Google Scholar 

  32. T. Priol.: Lancer de rayon sur des architectures parallèles: étude et mise en oeuvre. PhD thesis, Institut de Formation Supérieure en Informatique et Communication, Rennes, June 1989.

    Google Scholar 

  33. S. Roth.: Ray casting for modeling solids. Computer Graphics and Image Processing, 18 (2): 109–144, February 1982.

    Article  Google Scholar 

  34. T. Takahashi, M. Yoshida, and T. Naruse.: Architecture and performance evaluation of the dedicated graphics computer: SIGRT. In COMPINT’87, pages 153–160. IEEE, November 1987.

    Google Scholar 

  35. T. Whitted.: An improved illmination model for shaded display. Computer Graphics and Image Processing, 23 (6): 343–349, June 1980.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 EUROGRAPHICS The European Association for Computer Graphics

About this chapter

Cite this chapter

Badouel, D., Priol, T. (1992). An Efficient Parallel Ray Tracing Scheme for Highly Parallel Architectures. In: Grimsdale, R.L., Kaufman, A. (eds) Advances in Computer Graphics Hardware V. EurographicSeminars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76777-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76777-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76779-1

  • Online ISBN: 978-3-642-76777-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics