Clinical Manifestations of Cardiovascular Dysfunction in Sepsis

  • A. Kumar
  • J. E. Parrillo


During the last four decades, sepsis and septic shock have emerged as the most common cause of ICU mortality [1–4]. The National Hospital Discharge Survey of the Center for Disease Control’s National Center for Health Statistics found septicemia to be the 13th leading cause of death in the United States and recorded over 2.5 million septicemia related hospital discharges in the United States from 1979 to 1987 [5]. Estimates of the annual incidence of gram-negative bacteremia in American intensive care units 20 years ago varied between 72000 and 300000 cases/yr [4, 7, 8]. With a case fatality rate of 33–40% for gram-negative bacteremia and as high as 90% with gram-negative shock [1, 4, 6], associated annual mortality was estimated to be between 18 000 and 100 000 per year [4, 7, 8]. While some of these latter patients eventually succumbed to multisystem organ failure, most died of the refractory hypotension and cardiovascular collapse of septic shock. From 1979 to 1987, the cost for caring for such patients accounted for 5–10 billion dollars in health care expenditures annually [5]. There is little reason to believe that the incidence and annual mortality have been significantly different in any other developed nation. Similarly, the associated health care expenditures would be quite substantial. Given the documented increase in incidence of gram-negative bacteremia over the last half century and the fact that the estimates reviewed above do not include substantial and increasing numbers of episodes of septicemia associated with gram-positive organisms and fungi, the true current incidence, associated mortality and health care costs of sepsis and septic shock are probably considerably higher.


Septic Shock Left Ventricular Ejection Fraction Septic Shock Patient Stroke Volume Index Right Ventricular Ejection Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finland M (1970) Changing ecology of bacterial infections as related to antibacterial therapy. J Infect Dis 122:419–431.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilson F (1984) Surgical intensive care units. In: Parrillo JE, Ayres SM (eds) Major issues in critical care medicine. Williams and Wilkins, Baltimore, pp 17–33.Google Scholar
  3. 3.
    Parrillo JE (1984) Septic shock: clinical manifestations, pathogenesis, hemodynamics, and management in a critical care unit. In: Parrillo JE, Ayres SM (eds) Major issues in critical care medicine. Williams and Wilkins, Baltimore, pp 111–125.Google Scholar
  4. 4.
    McCabe WR, Kreger BE, Johns M (1972) Type specific and crossreactive antibodies in gram-negative bacteremia. N Engl J Med 287:261–267.PubMedCrossRefGoogle Scholar
  5. 5.
    Anonymous (1990) Increase in national hospital discharge survey rates for septicemia-United States, 1979-1987. JAMA 263:937.Google Scholar
  6. 6.
    Parker MM, Parrillo JE (1983) Septic shock: hemodynamics and pathogenesis. JAMA 250:3324–3327.PubMedCrossRefGoogle Scholar
  7. 7.
    Wolff SM, Bennett JV (1974) Gram-negative rod bacteremia (editorial). N Engl J Med 291:133–134.CrossRefGoogle Scholar
  8. 8.
    Parrillo JE (1989) Septic shock in humans: clinical evaluation, pathogenesis, and therapeutic approach. In: Shoemaker WC, Ayres S, Grenvik A, Holbrook PR, Thompson WL (eds) Textbook of critical care, 2nd edn. Saunders, Philadelphia, pp 1006–1024.Google Scholar
  9. 9.
    Waisbren BA (1951) Bacteremia due to gramnegative bacilli other than salmonella. Arch Intern Med 88:467–488.CrossRefGoogle Scholar
  10. 10.
    Nishijima H, Weil MH, Shubin H, Cavanilles J (1973) Hemodynamic and metabolic studies on shock associated with gram-negative bacteremia. Medicine (Baltimore) 52:287–294.CrossRefGoogle Scholar
  11. 11.
    Udhoji VN, Weil MH (1965) Hemodynamic and metabolic studies on shock associated with bacteremia. Ann Intern Med 62:966–978.PubMedGoogle Scholar
  12. 12.
    Weil MH, Shubin H, Biddle M (1964) Shock caused by gram-negative microorganisms. Ann Intern Med 60:384–400.PubMedGoogle Scholar
  13. 13.
    Clowes GHA, Farrington GH, Zuschneid W, Cossette GR, Saravis C (1970) Circulating factors in the etiology of pulmonary insufficiency and right heart failure accompanying severe sepsis. Ann Surg 171: 663–678.PubMedCrossRefGoogle Scholar
  14. 14.
    Kwaan HM, Weil MH (1969) Differences in the mechanism of shock caused by bacterial infections. Surg Gynecol Obstet 128:37–45.PubMedGoogle Scholar
  15. 15.
    Shoemaker WC (1971) Cardiorespiratory patterns in complicated and uncomplicated septic shock. Ann Surg 174:119–125.PubMedCrossRefGoogle Scholar
  16. 16.
    Weil MH, Nishijima H (1978) Cardiac output in bacterial shock. Am J Med 64:920–922.PubMedCrossRefGoogle Scholar
  17. 17.
    Weil MH, MacLean LD, Visscher MD, Spink W (1956) Studies on the circulatory changes in the dog produced by endotoxin from gram-negative microorganisms. J Clin Invest 35:1191–1198.PubMedCrossRefGoogle Scholar
  18. 18.
    Postel J, Schloerb PR (1977) Cardiac depression in bacteremia. Ann Surg 186:74–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Hinshaw LB (1979) Myocardial function in endotoxin shock. Circ Shock [Suppl] 1:43–51.Google Scholar
  20. 20.
    Solis RT, Downing SE (1966) Effects of E. coli endotoxemia on ventricular performance. Am J Physiol 211:307–313.PubMedGoogle Scholar
  21. 21.
    Lefer AM (1979) Mechanisms of cardiodepression in endotoxic shock. Circ Shock [Suppl] 1:1–8.Google Scholar
  22. 22.
    Packman MI, Rackow EC (1983) Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 11:165–169.PubMedCrossRefGoogle Scholar
  23. 23.
    Weisel RD, Vito L, Dennis RC, Valeri CR, Hechtman HB (1977) Myocardial depression during sepsis. Am J Surg 133:512–521.PubMedCrossRefGoogle Scholar
  24. 24.
    Wilson RF, Thal AP, Kindling PH, Grifka T, Ackerman E (1965) Hemodynamic measurements in septic shock. Arch Surg 91:121–129.CrossRefGoogle Scholar
  25. 25.
    Winslow EJ, Loeb HS, Rahimtoola SH, Kamath S, Gunnar RM (1973) Hemodynamic studies and results of therapy in 50 patients with bacteremic shock. Am J Med 54:421–432.PubMedCrossRefGoogle Scholar
  26. 26.
    Wilson RF, Sibbald WJ, Jaanimagi JL (1976) Hemodynamic effects of dopamine in critically ill septic patients. J Surg Res 20:163–172.PubMedCrossRefGoogle Scholar
  27. 27.
    Krausz MM, Perel A, Eimerl D, Cotev S (1977) Cardiopulmonary effects of volume loading in patients with septic shock. Ann Surg 185:429–434.PubMedCrossRefGoogle Scholar
  28. 28.
    Wiles JB, Cerra FB, Siegel JH, Border JR (1980) The systemic septic response: Does the organism matter? Crit Care Med 8:55–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Parker SM, Shelhamer JH, Natanson C, Ailing DW, Parrillo JE (1987) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15:923–929.PubMedCrossRefGoogle Scholar
  30. 30.
    Ahmed AJ, Kruse JA, Haupt MT, Chandrasekar PH, Carlson RW (1991) Hemodynamic responses to gram-positive versus gram-negative sepsis in critically ill patients with and without circulatory shock. Crit Care Med 19:1520–1525.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee K, van der Zee H, Dziuban SW Jr, Goldfarb RD (1988) Left ventricular function during chronic endotoxemia in swine. Am J Physiol 254: H324–330.PubMedGoogle Scholar
  32. 32.
    Stahl TJ, Alden PB, Ring WS, Madoff RC, Cerra FB (1990) Sepsis-induced diastolic dysfunction in chronic canine peritonitis. Am J Physiol 258: H 625–633.Google Scholar
  33. 33.
    Natanson C, Fink MP, Ballantyne HK, MacVittie TJ, Conklin JJ, Parrillo JE (1986) Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest 78:259–270.PubMedCrossRefGoogle Scholar
  34. 34.
    Natanson C, Danner RL, Fink MP et al (1988) Cardiovascular performance with E. coli challenges in a canine model of human sepsis. Am J Physiol (Heart Circ Physiol) 254:H558–569.PubMedGoogle Scholar
  35. 35.
    Natanson C, Danner RL, Elin RJ et al (1989) The role of endotoxemia in cardiovascular dysfunction and mortality. Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J Clin Invest 83:243–251.PubMedCrossRefGoogle Scholar
  36. 36.
    MacLean LD, Mulligan WG, McLean APH, Duff JH (1967) Patterns of septic shock in man: a detailed study of 56 patients. Ann Surg 166:543–558.PubMedCrossRefGoogle Scholar
  37. 37.
    Rackow EC, Kaufman BS, Falk JL, Astiz ME, Weil MH (1987) Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock 22: 11–22.PubMedGoogle Scholar
  38. 38.
    Rackow EC, Putnam D, Falk JL, Fein IA (1983) Preoperative hemodynamic evaluation of the high risk patient. Clin Res 31:827 (abstract).Google Scholar
  39. 39.
    Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE (1988) Depressed left ventricular performance response to volume infusion in patients with sepsis and septic shock. Chest 93: 903–910.PubMedCrossRefGoogle Scholar
  40. 40.
    Calvin JE, Driedger AA, Sibbald WJ (1981) Does the pulmonary capillary wedge pressure predict left ventricular preload in critically ill patients? Crit Care Med 9:437–443.PubMedCrossRefGoogle Scholar
  41. 41.
    Calvin JE, Driedger AA, Sibbald WJ (1981) The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery 90:61–76.PubMedGoogle Scholar
  42. 42.
    Calvin JE, Driedger AA, Sibbald WJ (1981) An assessment of myocardial function in human sepsis utilizing ECG gated cardiac scintigraphy. Chest 80:579–586.PubMedCrossRefGoogle Scholar
  43. 43.
    Raper R, Sibbald WJ, Driedger AA, Gerow K (1989) Relative myocardial depression in normotensive sepsis. J Crit Care 4:9–18.CrossRefGoogle Scholar
  44. 44.
    Parker MM, Shelhamer JH, Bacharach SL et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490.PubMedGoogle Scholar
  45. 45.
    Ellrodt AG, Riedinger MS, Kimchi A et al (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 110:402–409.PubMedCrossRefGoogle Scholar
  46. 46.
    Jardin F, Brun-Ney D, Auvert B, Beauchet A, Bourdarias JP (1990) Sepsis related cardiogenic shock. Crit Care Med 18:1055–1060.PubMedCrossRefGoogle Scholar
  47. 47.
    Artucio H, Digenio A, Pereyra M (1989) Left ventricular function during sepsis. Crit Care Med 17: 323–327.PubMedCrossRefGoogle Scholar
  48. 48.
    Monsalve F, Rucabado L, Salvador A, Bonastre J, Cunat J, Ruano M (1984) Myocardial depression in septic shock caused by meningococcal infection. Crit Care Med 12:1021–1023.PubMedCrossRefGoogle Scholar
  49. 49.
    Mellow E, Parker MM, Cunnion RE, Parrillo JE (1986) Reversible depression and ventricular dilation demonstrated by two dimensional echocar-diography in humans with septic shock. Crit Care Med 14:342 (abstract).CrossRefGoogle Scholar
  50. 50.
    Stratton JR, Werner JA, Pearlman AS, Janko CL, Kliman S, Jackson MC (1982) Bacteremia and the heart. Am J Med 73:851–858.PubMedCrossRefGoogle Scholar
  51. 51.
    Sibbald WJ, Paterson NAM, Holliday RL, Anderson RA, Lobb TR, Duff JH (1978) Pulmonary hypertension in sepsis: measurement by the pulmonary arterial diastolic-pulmonary wedge pressure gradient and the influence of passive and active factors. Chest 73:583–591.PubMedCrossRefGoogle Scholar
  52. 52.
    Hoffman MJ, Greenfield LJ, Sugerman HJ, Tatum JL (1983) Unsuspected right ventricular dysfunction in shock and sepsis. Ann Surg 198:307–319.PubMedCrossRefGoogle Scholar
  53. 53.
    Kimchi A, Ellrodt GA, Berman DS, Riedinger MS, Swan HJC, Murata GH (1984) Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 4:945–951.PubMedCrossRefGoogle Scholar
  54. 54.
    Schneider AJ, Teule GJJ, Groenveld ABJ, Nauta J, Heidendal GAK, Thijs LG (1988) Biventricular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 116:103–112.PubMedCrossRefGoogle Scholar
  55. 55.
    Parker MM, McCarthy KE, Ognibene FP, Parrillo JE (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–131.PubMedCrossRefGoogle Scholar
  56. 56.
    Ross J (1979) Acute displacement of the diastolic pressure-volume curve of the left ventricle: role of the pericardium and the right ventricle. Circulation 59:32–37.PubMedGoogle Scholar
  57. 57.
    Vincent JL, Thirion M, Brimioulle S, Lejeune P, Kahn RJ (1986) Thermodilution measurement of right ventricular ejection fraction with a modified pulmonary artery catheter. Intensive Care Med 12: 33–38.PubMedCrossRefGoogle Scholar
  58. 58.
    Dhainaut JF, Brunet F, Monsallier JF et al (1987) Bedside evaluation of right ventricular performance using a rapid computerized thermodilution method. Crit Care Med 15:148–152.PubMedCrossRefGoogle Scholar
  59. 59.
    Dhainaut JF, Lanore JJ, de Gournay MF et al (1988) Right ventricular dysfunction in patients with septic shock. Intensive Care Med 14:488–491.PubMedCrossRefGoogle Scholar
  60. 60.
    Vincent JL, Reuse C, Frank N, Contrempre B, Kahn RJ (1989) Right ventricular dysfunction in septic shock: assessment by measurements of right ventricular ejection fraction using the thermodilution technique. Acta Anaesthesiol Scand 33:34–38.PubMedCrossRefGoogle Scholar
  61. 61.
    Clowes GHA, Vucinic M, Weidner MG (1966) Circulatory and metabolic alterations associated with survival or death in peritonitis. Ann Surg 163: 866–884.PubMedCrossRefGoogle Scholar
  62. 62.
    Baumgartner JD, Vaney C, Perret C (1984) An extreme form of hyperdynamic syndrome in septic shock. Intensive Care Med 10:245–249.PubMedCrossRefGoogle Scholar
  63. 63.
    Groeneveld ABJ, Bronsveld W, Thijs LG (1986) Hemodynamic determinants of mortality in human septic shock. Surgery 99:140–153.PubMedGoogle Scholar
  64. 64.
    Groeneveld ABJ, Nauta JJP, Thijs LG (1988) Peripheral vascular resistance in septic shock: its relation to outcome. Intensive Care Med 14: 141–147.PubMedCrossRefGoogle Scholar
  65. 65.
    Azimi G, Vincent JL (1986) Ultimate survival from septic shock. Resuscitation 14:245–253.PubMedCrossRefGoogle Scholar
  66. 66.
    Parker MM, Suffredini AF, Natanson C, Ognibene FP, Shelhamer JH, Parrillo JE (1989) Responses of left ventricular function in survivors and nonsurvivors of septic shock. J Crit Care 4:19–25.CrossRefGoogle Scholar
  67. 67.
    Hinshaw LB, Archer LT, Spitzer JJ, Black MR, Peyton MD, Greenfield LJ (1974) Effects of coronary hypotension and endotoxin on myocardial performance. Am J Physiol 227:1051–1057.PubMedGoogle Scholar
  68. 68.
    Elkins RC, McCurdy JR, Brown PP, Greenfield LJ (1973) Effects of coronary perfusion pressure on myocardial performance during endotoxic shock. Surg Gynecol Obstet 137:991–996.PubMedGoogle Scholar
  69. 69.
    Peyton MD, Hinshaw LB, Greenfield LJ, Elkins RC (1976) The effects of coronary vasodilation on cardiac performance during endotoxin shock. Surg Gynecol Obstet 143:533–538.PubMedGoogle Scholar
  70. 70.
    Cunnion RE, Schaer Gl, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637–644.PubMedCrossRefGoogle Scholar
  71. 71.
    Dhainaut JF, Huyghebaert MF, Monsallier JF et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541.PubMedCrossRefGoogle Scholar
  72. 72.
    Wiggers CJ (1947) Myocardial depression in shock. A survey of cardiodynamic studies. Am Heart J 33: 633–650.PubMedCrossRefGoogle Scholar
  73. 73.
    Brand ED, Lefer AM (1966) Myocardial depressant factor in plasma from cats in irreversible postoligemic shock. Proc Soc Exp Biol Med 122: 200–203.PubMedGoogle Scholar
  74. 74.
    Wangensteen SL, Geissenger WT, Lovett WL, Glenn TM, Lefer AM (1971) Relationship between splanchnic blood flow and a myocardial depressant factor in endotoxin shock. Surgery 69:410–418.PubMedGoogle Scholar
  75. 75.
    Maksad KA, Chung-Ja C, Stuart CR, Brosco FA, Clowes GHA (1979) Myocardial depression in septic shock: physiologic and metabolic effects of a plasma factor on an isolated heart. Circ Shock [Suppl] 1:35–42.Google Scholar
  76. 76.
    McConn R, Greineder JK, Wasserman F, Clowes GHA (1979) Is there a humoral factor that depresses ventricular function in sepsis? Circ Shock 1:9–22.Google Scholar
  77. 77.
    Lovett WL, Wangensteen SL, Glenn TM, Lefer AM (1971) Presence of a myocardial depressant factor in patients with circulatory shock. Surgery 70: 223–231.PubMedGoogle Scholar
  78. 78.
    Demeules JE (1984) A physiologic explanation for cardiac deterioration in septic shock. J Surg Res 36: 553–562.PubMedCrossRefGoogle Scholar
  79. 79.
    Santis DD, Phillips P, Spath MA, Lefer AM (1981) Delayed appearance of a circulating myocardial depressant factor in burn patients. Ann Emerg Med 10:22–24.PubMedCrossRefGoogle Scholar
  80. 80.
    Lefer AM (1979) Mechanisms of cardiodepression in endotoxin shock. Circ Shock [Suppl] 1:1–8.Google Scholar
  81. 81.
    Gomez A, Wang R, Unruh H et al (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73:671–685.PubMedCrossRefGoogle Scholar
  82. 82.
    Eng J, Ruining W, Gomze H et al (1989) Myocardial depressant factor is found in the 10000 to 30000 molecular weight fraction of plasma in E. coli septic shock in dogs. Am Rev Respir Dis 139:A19 (abstract).Google Scholar
  83. 83.
    Wang R, Jacobs H, Bose D et al (1990) Analysis of biochemical nature of myocardial depressant factor (MDF) in E. coli sepsis in dogs. Am Rev Respir Dis 141:A 139 (abstract).Google Scholar
  84. 84.
    Harary I, Farley B (1960) In-vitro studies on single beating rat heart cells. Science 131:1674–1675.PubMedCrossRefGoogle Scholar
  85. 85.
    Carli A, Auclair MC, Vernimmen C, Jourdon P (1979) Reversal by calcium of rat heart cell dysfunction induced by human sera in septic shock. Circ Shock 6:147–157.PubMedGoogle Scholar
  86. 86.
    Benassayag C, Christeff N, Auclair MC et al (1984) Early released lipid-soluble cardiodepressant factor and elevated oestrogenic substances in human septic shock. Eur J Clin Invest 14:288–294.PubMedCrossRefGoogle Scholar
  87. 87.
    Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette WH (1985) A circulating myocardial depressant substance in humans with septic shock. J Clin Invest 76:1539–1553.PubMedCrossRefGoogle Scholar
  88. 88.
    Reilly JM, Cunnion RE, Burch-Whitman C, Parker MM, Shelhamer JH, Parrillo JE (1989) A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest 95:1072–1080.PubMedCrossRefGoogle Scholar
  89. 89.
    Schuette W, Burch C, Roach P, Parrillo JE (1987) Closed loop television tracking of beating heart cells in-vitro. Cytometry 8:101–103.PubMedCrossRefGoogle Scholar
  90. 90.
    Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parrillo JE (1991) Endotoxemia in human septic shock. Chest 99:169–175.PubMedCrossRefGoogle Scholar
  91. 91.
    Suffredini AF, Fromm RE, Parker MM et al (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287.PubMedCrossRefGoogle Scholar
  92. 92.
    Ziegler EJ, Fisher CJ Jr, Sprung CL et al (1991) Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. N Engl J Med 324:429–436.PubMedCrossRefGoogle Scholar
  93. 93.
    Greenman RL, Schein RM, Martin MA et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266:1097–1102.PubMedCrossRefGoogle Scholar
  94. 94.
    Parker JL, Adams HR (1979) Myocardial effects of endotoxin shock: characterization of an isolated heart muscle model. Adv Shock Res 2:163–175.PubMedGoogle Scholar
  95. 95.
    Parker JL, Adams HR (1981) Contractile dysfunction of atrial myocardium from endotoxin-shocked pigs. Am J Physiol 240:H954–962.PubMedGoogle Scholar
  96. 96.
    Parker JL, Adams HR (1985) Development of myocardial dysfunction in endotoxin shock. Am J Physiol 248:H818–826.PubMedGoogle Scholar
  97. 96.
    Hollenberg SM, Cunnion RE, Lawrence M, Kelly JL, Parrillo JE (1989) Tumor necrosis factor depresses myocardial cell function: results using an in-vitro assay of myocyte performance. Clin Res 37:528 A (abstract).Google Scholar
  98. 98.
    Casey L, Balk R, Bone R (1989) Serial determinations of TNF-alpha, IL-1-beta and LPS in patients with septic syndrome. Cytokine 1:150 (abstract).Google Scholar
  99. 99.
    Girardin E, Grau GE, Dayer JM, Roux-Lombard P, Lambert PH (1989) Plasma tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319: 397–400.CrossRefGoogle Scholar
  100. 100.
    Michie HR, Manogue KR, Spriggs DR et al (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318: 1481–1486.PubMedCrossRefGoogle Scholar
  101. 101.
    Natanson C, Eichenholz PW, Danner RL et al (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169: 823–832.PubMedCrossRefGoogle Scholar
  102. 102.
    Eichenholz PW, Eichacker PQ, Hoffman WD et al (1991) Increasing doses of tumor necrosis factor produce different patterns of acute and subacute myocardial dysfunction. Clin Res 39:321 A (abstract).Google Scholar
  103. 103.
    Tracey KJ, Fong Y, Hesse DG (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 58:662–664.CrossRefGoogle Scholar
  104. 104.
    Kumar A, Dimou C, Hollenberg SM et al (1992) Tumor necrosis factor produces depression of myocardial cell contraction in vitro. Crit Care Med (abstract) (in press).Google Scholar
  105. 105.
    Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA (1988) Interleukin-1 induces a shock-like state in rabbits. J Clin Invest 81:1162–1172.PubMedCrossRefGoogle Scholar
  106. 106.
    Wakabayashi G, Gelfand JA, Burke JF, Thompson RC, Dinarello CA (1991) A specific receptor antagonist for interleukin-1 prevents Escherichia coli-induced shock in rabbits. FASEB J 5:338–343.PubMedGoogle Scholar
  107. 107.
    Ognibene FP, Rosenberg SA, Lotze M et al (1988) Interleukin-2 administration causes reversible hemodynamic changes and left ventricular dysfunction which are similar to those seen in septic shock. Chest 94:750–754.PubMedCrossRefGoogle Scholar
  108. 108.
    Fletcher JE (1982) The role of prostaglandins in sepsis. Scand J Infect Dis [Suppl] 31:55–60.Google Scholar
  109. 109.
    Fink M, MacVittie TJ, Casey L (1984) Inhibition of prostaglandin synthesis restores normal hemodynamics in canine hyperdynamic sepsis. Ann Surg 200:619–626.PubMedCrossRefGoogle Scholar
  110. 110.
    Revhaug A, Michie HR, Manson JM et al (1988) Inhibition of cyclooxygenase attenuates the metabolic response to endotoxin in humans. Arch Surg 123:162–170.PubMedCrossRefGoogle Scholar
  111. 111.
    Metz CA, Sheagren JN (1990) Ibuprofen in animal models of septic shock. J Crit Care 5:206–212.CrossRefGoogle Scholar
  112. 112.
    Bernard GR, Reines HD, Metz CA et al (1988) Effects of a short course of ibuprofen in patients with severe sepsis (abstract). J Am Thorac Soc 137:1543.Google Scholar
  113. 113.
    Schutzer KM, Haglung U, Falk A (1989) Cardiopulmonary dysfunction in a feline septic shock model: possible role of leukotrienes. Circ Shock 29: 13–25.PubMedGoogle Scholar
  114. 114.
    Goldberg RN, Suguihara C, Marinez O, Bancalari A, Clark MR, Bancalari E (1988) The role of leukotrienes in the late hemodynamic manifestations of group B streptococcal sepsis in piglets. Prostaglandins Leukot Essent Fatty Acids 33:191–198.PubMedGoogle Scholar
  115. 115.
    O’Flaherty JT, Craddock PR, Jacob HS (1977) Mechanism of anticomplementary activity of corticosteroids in-vivo: possible relevance in endotoxin shock. Proc Soc Exp Biol Med 154:206–209.PubMedGoogle Scholar
  116. 116.
    Heideman M, Kaijser B, Gelin LE (1979) Complement activation early in endotoxin shock. J Surg Res 26:74–78.PubMedCrossRefGoogle Scholar
  117. 117.
    Leon C, Rodrigo MJ, Tomasa A et al (1982) Complement activation in septic shock due to gram-negative and gram-positive bacteria. Crit Care Med 10:308–310.PubMedCrossRefGoogle Scholar
  118. 118.
    Ognibene FP, Parker MM, Burch-Whitman C et al (1988) Neutrophil aggregation activity and septic shock in humans: neutrophil aggregation by a C5a-like material occurs more frequently than complement component depletion and correlates with depression of systemic vascular resistance. J Crit Care 3:103–111.CrossRefGoogle Scholar
  119. 119.
    Chang S, Feddersen CO, Henson PM, Voelkel NF (1987) Platelet activating factor mediates hemodynamic changes and lung injury in endotoxin-treated rats. J Clin Invest 79:1498–1509.PubMedCrossRefGoogle Scholar
  120. 120.
    Stahl GL, Lefer AM (1987) Mechanisms of platelet activating factor-induced cardiac depression in the isolated perfused rat heart. Circ Shock 23:165–177.PubMedGoogle Scholar
  121. 121.
    Reynolds DG, Gurli NJ, Vargish T, Lechner RB, Faden AL, Holaday JW (1980) Blockade of opiate receptors with naloxone improves survival and cardiac performance in canine endotoxic shock. Circ Shock 7:39–48.PubMedGoogle Scholar
  122. 122.
    Rees M, Bowen JC (1984) Hemodynamic response to naloxone during live Escherichia coli sepsis in splenectomized dogs. Ann Surg 200:614–618.PubMedCrossRefGoogle Scholar
  123. 123.
    Roberts DE, Dobson KE, Hall KW, Light RB (1988) Effects of prolonged naloxone infusion in septic shock. Lancet 2:699–702.PubMedCrossRefGoogle Scholar
  124. 124.
    Krause SM, Hess ML (1979) Diphenhydramine protection of the failing myocardium during gram-negative endotoxemia. Circ Shock 6:75–87.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. Kumar
    • 1
  • J. E. Parrillo
    • 1
  1. 1.Section of Critical Care Medicine, Department of MedicineRush-Presbyterian-St. Luke’s Medical CenterChicagoUSA

Personalised recommendations