Skip to main content

Mechanosensory Transduction in Ciliates (Protozoa)

  • Chapter
Comparative Aspects of Mechanoreceptor Systems

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 10))

Abstract

Most living cells are mechanosensitive in that mechanical strain exerted on their plasma membrane results in a transient change in electrical conductance of the membrane. In cells unspecialized for mechanoreception, a mechanically induced “injury” would result in a membrane potential change due to traumatic leak currents. In specialized mechanoreceptor tissue, however, the mechanical energy input results in the opening and/or closing of specific sensory ion channels in the membrane; this may provide a very high sensitivity to a mechanical stimulus. The gating of these mechanosensitive channels results in a defined change in ion conductance, and consequently, in a shift of the membrane potential. The steps of mechanoelectrical coupling are summarized by the following scheme: mechanical energy input — deformation of the sensitive structure — gating of mechanosensory ion channels — change in membrane ion conductance — receptor current flow — receptor potential — voltage-sensitive modification and integration — motor output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akoev GN (1982) The effect of Mg and Ca on the excitability of Pacinian corpuscles. Brain Res 239:39–49

    Article  Google Scholar 

  • Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206

    Article  PubMed  CAS  Google Scholar 

  • Carbone E, Lux HD (1984) A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 46:413–418

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature (Lond) 281:675–677

    Article  CAS  Google Scholar 

  • Deitmer JW (1981) Voltage and time characteristics of the potassium mechanoreceptor current in the ciliate Stylonychia. J Comp Physiol 141:173–182

    Article  CAS  Google Scholar 

  • Deitmer JW (1982) The effects of tetraethylammonium and other agents on the potassium mechanoreceptor current in the ciliate Stylonychia. J Exp Biol 96:239–249

    PubMed  CAS  Google Scholar 

  • Deitmer JW (1983) Ca channels in the membrane of the hypotrich ciliate Stylonychia. In: Grinnell A, Moody WJ (eds) The physiology of excitable cells. Liss, New York, pp 51–63

    Google Scholar 

  • Deitmer JW (1984) Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J Physiol 355:137–159

    PubMed  CAS  Google Scholar 

  • Deitmer JW (1986) Voltage dependence of two inward currents carried by calcium and barium in the ciliate Stylonychia mytilus. J Physiol 380:551–574

    PubMed  CAS  Google Scholar 

  • Deitmer JW (1987) Loss of electrical excitability during encystment of the hypotrichous ciliate Stylonychia mytilus. Naturwissenschaften 74:140–142

    Article  Google Scholar 

  • Deitmer JW (1988) Multiple types of calcium channels: Is their function related to their localization? In: Grinnell AD, Armstrong D, Jackson MB (eds) Calcium and ion channel modulation. Plenum Press, New York, pp 19–32

    Google Scholar 

  • Deitmer JW, Eckert R (1985) Two components of Ca-dependent potassium current in identified neurones ofAplysia californica. Pflügers Arch 403:353–359

    Article  CAS  Google Scholar 

  • Deitmer JW, Machemer H (1982) Osmotic tolerance of Ca-dependent excitability in the marine ciliate Paramecium calkinsi. J Exp Biol 97:311–324

    CAS  Google Scholar 

  • Deitmer JW, Machemer H, Martinac B (1984) Motor control of three types of ciliary organelles in the ciliate Stylonychia. J Comp Physiol A 154:113–120

    Article  Google Scholar 

  • Deitmer JW, Ivens I, Pernberg J (1986) Changes in voltage-dependent calcium currents during the cell cycle of the ciliateStylonychia. Exp Cell Res 162:549–554

    Article  PubMed  CAS  Google Scholar 

  • De Peyer JE, Deitmer JW (1980) Divalent cations as charge carriers during two functionally different membrane currents in the ciliate Stylonychia. J Exp Biol 88:73–89

    PubMed  Google Scholar 

  • De Peyer JE, Machemer H (1977) Membrane excitability in Stylonychia : properties of the two-peak regenerative Ca-response. J Comp Physiol 121:15–32

    Article  Google Scholar 

  • De Peyer JE, Machemer H (1978a) Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia. J Comp Physiol 127:255–266

    Article  Google Scholar 

  • De Peyer JE, Machemer H (1978b) Are receptor-activated ciliary motor responses mediated through voltage or current? Nature (Lond) 276:285–287

    Article  Google Scholar 

  • De Peyer JE, Machemer H (1982a) Electromechanical coupling of cilia. I. Effects of depolarizing voltage steps. Cell Motil 2:483–496

    Article  Google Scholar 

  • De Peyer JE, Machemer H (1982b) Electromechanical coupling of cilia. II. Effects of hyperpolarizing voltage steps. Cell Motil 2:497–508

    Article  Google Scholar 

  • Doroszewski M (1970) Responses of the ciliate Dileptus to mechanical stimuli. Acta Protozool 7:353–362

    Google Scholar 

  • Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 171:119

    Google Scholar 

  • Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267

    Article  PubMed  CAS  Google Scholar 

  • Edwards C, Ottoson D, Rydqvist B, Swerup B (1981) The permeability of the transducer membrane of the crayfish stretch receptor to calcium and to other divalent cations. Neuroscience 6:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Epstein M, Eckert R (1973) Membrane control of ciliary activity in the protozoanEuplotes. J Exp Biol 58:437–462

    Google Scholar 

  • Fenchel T (1980) Suspension feeding in ciliate protozoa: functional response and particle size selection. Microbiol Ecol 6:1–11

    Article  Google Scholar 

  • Gage PW (1976) Generation of end-plate potentials. Physiol Rev 56:177–247

    PubMed  CAS  Google Scholar 

  • Gustin MC, Bonini MN, Nelson DL (1983) Membrane potential regulation of cAMP: control mechanism for the swimming behavior inParamecium. Soc Neurosci Abstr 9:167

    Google Scholar 

  • Hara R, Asai H (1980) Electrophysiological responses of Didinium nasutum to Paramecium capture and mechanical stimulation. Nature (Lond) 283:869–870

    Article  Google Scholar 

  • Hara R, Naitoh Y (1980) Electrophysiological responses of Didinium nasutum to mechanical and electrical stimulation. Zool Mag Tokyo 89:450

    Google Scholar 

  • Hennessey TM, Machemer H, Nelson DL (1985) Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur J Cell Biol 36:153–156

    PubMed  CAS  Google Scholar 

  • Hille B (1978) Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J 22:283–294

    Article  PubMed  CAS  Google Scholar 

  • Ivens I, Deitmer JW (1986) Inhibition of a voltage-dependent Ca current by concanavalin A. Pflügers Arch 406:212–217

    Article  PubMed  CAS  Google Scholar 

  • Jennings HS (1906) Behavior of the lower organisms. Columbia Univ Press, New York

    Book  Google Scholar 

  • Kamada T (1934) Some observations on potential differences across the ectoplasm membrane of Paramecium. J Exp Biol 11:94–102

    Google Scholar 

  • Karpenko AA, Railkin AI, Seravin LN (1977) Feeding behaviour of unicellular animals. II. The role of prey mobility in the feeding behaviour of protozoa. Acta Protozool 16:333–344

    Google Scholar 

  • Kung C (1979) Biology and genetic of Paramecium behaviour. In: Brakefield XO (ed) Topics in neurogenetics. Elsevier, New York, pp 1–26

    Google Scholar 

  • Kung C, Saimi Y (1985) Ca2+ channels of Paramecium : a multidisciplinary study. Membr Transport 23:45–66

    CAS  Google Scholar 

  • Llinas R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567

    PubMed  CAS  Google Scholar 

  • Machemer H (1974) Frequency and directional responses of cilia to membrane potential changes inParamecium. J Comp Physiol 92:293–316

    Article  Google Scholar 

  • Machemer H (1977) Motor activity and bioelectric control of cilia. Fortschr Zool 24:195–210

    PubMed  CAS  Google Scholar 

  • Machemer H (1986) Electromotor coupling in cilia. In: Luttgau HCh (ed) Membrane control of cellular activity. Progr Zool 33, Fischer, Stuttgart, pp 205–250

    Google Scholar 

  • Machemer H, Deitmer JW (1985) Mechanoreception in ciliates. In: Ottoson D (ed) Progress in sensory physiology, vol 5. Springer, Berlin Heidelberg New York Tokyo, pp 81–118

    Chapter  Google Scholar 

  • Machemer H, Deitmer JW (1987) From structure to behaviour: Sty ¡onychia as a model system for cellular physiology. In: Corliss JD, Patterson DJ (eds) Progress in protistology, vol 2. Biopress, Bristol, pp 213–330

    Google Scholar 

  • Machemer H, De Peyer JE (1977) Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated Protozoa. Verh Dtsch Zool Ges Erlangen 1977:86–110

    Google Scholar 

  • Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49

    PubMed  CAS  Google Scholar 

  • Machemer-Rohnisch S, Machemer H (1984) Receptor current following controlled stimulation of immobile tail cilia inParamecium caudatum. J Comp Physiol A 154:263–271

    Article  Google Scholar 

  • McClesky EM, Fox AP, Feldman D, Tsien RW (1986) Different types of calcium channels. J Exp Biol 124:177

    Google Scholar 

  • Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7:1–18

    Article  PubMed  CAS  Google Scholar 

  • Naitoh Y (1984) Mechanosensory transduction in protozoa. In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. Plenum Press, New York, pp 113–135

    Chapter  Google Scholar 

  • Naitoh Y, Eckert R (1968) Electrical properties of Paramecium: modification by bound and free cations. Z Vergl Physiol 61:427–452

    Article  Google Scholar 

  • Naitoh Y, Eckert R (1969a) Ionic mechanisms controlling behavioral responses in Paramecium to mechanical stimulation. Science 164:963–965

    Article  PubMed  CAS  Google Scholar 

  • Naitoh Y, Eckert R (1969b) Ciliary orientation: controlled by cell membrane or by intracellular fibrils? Science 166:1633–1635

    Article  PubMed  CAS  Google Scholar 

  • Naitoh Y, Eckert R (1973) Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential. J Exp Biol 54:53–65

    Google Scholar 

  • Nakaoka Y, Machemer H (1990) Effects of cyclic nucleotides and intracellular Ca on voltage-activated ciliary beating inParamecium. J Comp Physiol A 166:401–406

    Article  Google Scholar 

  • Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in the Paramecium surface membrane. J Comp Physiol 135:233–242

    Article  CAS  Google Scholar 

  • Ogura A, Takahashi K (1976) Artificial decilication causes loss of calcium-dependent responses in Paramecium. Nature (Lond) 264:170

    Article  CAS  Google Scholar 

  • Onimaru H, Naitoh Y, Ohki K, Nozawa Y (1979) Electrophysiological studies on the membrane of Tetrahymena. Dobutsugaku Zasshi (Zool Mag Tokyo) 88:529

    Google Scholar 

  • Pape C, Machemer H (1986) Electrical properties and membrane currents in the ciliate Didinium. J Comp Physiol A 158:11–124

    Article  Google Scholar 

  • Satow Y, Murphy AD, Kung C (1983) The ionic basis of the depolarizing mechanoreceptor potential of Paramecium tetraurelia. J Exp Biol 103:253–264

    CAS  Google Scholar 

  • Swerup C, Rydqvist B, Ottoson D (1983) Time characteristics and potential dependence of early and late adaptation in the crustacean stretch receptor. Acta Physiol Scand 119:91–99

    Article  PubMed  CAS  Google Scholar 

  • Wood DC (1982) Membrane permeabilities determining resting, action and mechanoreceptor potentials inStentor coeruleus. J Comp Physiol 146:537–550

    Article  CAS  Google Scholar 

  • Wood DC (1985) The mechanism of tubocurarine action on mechanoreceptor channels in the protozoanStentor coeruleus. J Exp Biol 117:215–235

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deitmer, J.W. (1992). Mechanosensory Transduction in Ciliates (Protozoa). In: Ito, F. (eds) Comparative Aspects of Mechanoreceptor Systems. Advances in Comparative and Environmental Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76690-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76690-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76692-3

  • Online ISBN: 978-3-642-76690-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics