Water and Life pp 301-315 | Cite as

The Role of Antifreeze Glycopeptides and Peptides in the Survival of Cold-water Fishes

  • A. L. DeVries
  • C.-H. C. Cheng


The necessity of maintaining a liquid state at the cellular level for life is obvious. For poikilotherms„ the limits of cellular function and hence life are set by the temperatures at which phase changes of water occur. At the lower end it is 0 °C, the freezing point of water, or the freezing point of the body fluids of the organism, which is slightly lower than 0 °C, as determined by the salt content. Some organisms have evolved mechanisms which allow them to exist in a dormant state, or in an active state at temperatures well below their freezing points. This chapter is a brief account of how certain marine fishes maintain their hypo-osmotic body fluids in a liquid state while living actively in hyper-osmotic, freezing seawater laden with ice crystals, and avoid death from freezing.


Antifreeze Protein Antarctic Fish Antifreeze Glycoprotein Coldwater Fish Shorthorn Sculpin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren JA, DeVries AL (1984) Comparison of antifreeze glycopeptides from several antarctic fishes. Polar Biol 3: 3–97CrossRefGoogle Scholar
  2. Ahlgren JA, Cheng CC, Schrag JD, DeVries AL (1988) Freezing avoidance and the distribution of antifreeze glycopeptides in blody fluids and tissues of antarctic fish. J Exp Biol 137: 549–563PubMedGoogle Scholar
  3. Ananthanarayanan VS, Slaughter D, Hew CL (1986) Antifreeze proteins from the ocean pout, Macrozoarces americanus: circular diochroism spectral studies on the native and denatured states. Biochim Biophys Acta 870: 154–159CrossRefGoogle Scholar
  4. Andriashev AP (1970) Cryopelagic fishes in the arctic and antarctic and their significance in polar ecosystems. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic Press, Lond New York, p 297Google Scholar
  5. Black VS (1951) Some aspects of the physiology of fish. II. Osmotic regulation in teleost fishes. Univ Toronto Stud Biol Ser 59 71: 53–89Google Scholar
  6. Boyd RB, DeVries AL (1983) The seasonal distribution of anionic binding sites in the basement membrane of the kidney glomerulus of the winter flounder Pseudopleuronectes ontericanus. Cell Tissue Res 234: 271–277PubMedCrossRefGoogle Scholar
  7. Cheng CC, DeVries AL (1989) Structures of antifreeze peptides from the antarctic eel pout, Attstrolycichthys brachycephalus. Biochim Biophys Acta 997: 55–64PubMedCrossRefGoogle Scholar
  8. Davies PL, Hew CL (1990) Biochemistry of fish antifreeze proteins. FASEB J 4: 2460–2468Google Scholar
  9. Davies PL, Hough C, Scott GK, Ng N, White BN, Hew CL (1984) Antifreeze protein genes of the winter flounder. J Biol Chem 259: 9241–9247PubMedGoogle Scholar
  10. Dayton PK, Robbilliard GA, DeVries AL (1969) Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science 163: 273–274Google Scholar
  11. DeVries AL (1968) Freezing resistance in some antarctic fishes. PhD Thesis, Stanford Univ, Standford, CaliforniaGoogle Scholar
  12. DeVries AL (1971) Glycoproteins as biological antifreeze agents in antarctic fishes. Science 172: 152–1155CrossRefGoogle Scholar
  13. DeVries AL (1982) Biological antifreeze agents in coldwater fishes. Comp Biochem Physiol A73: 627–640CrossRefGoogle Scholar
  14. DeVries AL (1984) Role of glycopeptides and peptides in inhibition of crystallization of water in polar fishes. Phil Trans R Soc Lond B304: 575–588CrossRefGoogle Scholar
  15. DeVries AL (1986) Antifreeze glycopeptides and peptides: interactions with ice and water. In: Packer L (ed) Methods of enzymology, vol 127. Academic Press, New York, 293 ppGoogle Scholar
  16. DeVries AL, Lin Y (1977a) The role of glycoprotein antifreezes in the survival of antarctic fishes. In: Llano GA (ed) Adaptations within antarctic ecosystems. Gulf, Houston, Texas, p 439Google Scholar
  17. DeVries AL, Lin Y (19776) Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim Biophys Acta 495: 88–392Google Scholar
  18. DeVries AL, Vandenheede J, Feeney RE (1971) Primary structure of freezing point-depressing glycoproteins. J Biol Chem 246: 305–308Google Scholar
  19. Dobbs GH, DeVries AL (1975a) Renal function in antarctic teleost fishes: serum and urine composition. Mar Biol 29: 59–70CrossRefGoogle Scholar
  20. Dobbs GH, DeVries AL (1975h) Aglomerular nephron of antarctic teleosts: a light electron microscopic study. Tissue Cell 7: 159–170PubMedCrossRefGoogle Scholar
  21. Dobbs GH, Lin Y, DeVries AL (1974) Aglomerularism in antarctic fish. Science 185: 793–794PubMedCrossRefGoogle Scholar
  22. Duman JG, DeVries AL (1972) Freezing behavior of aqueous solutions of glycoproteins from the blood of antarctic fish. Cryobiology 9: 469–472PubMedCrossRefGoogle Scholar
  23. Duman JG, DeVries AL (1974) Freezing resistance in winter flounder, Pseudopleuronectes americanus. Nature (Lond) 247: 237–238CrossRefGoogle Scholar
  24. Duman JG, DeVries AL (1976) Isolation, characterization and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus. Comp Biochem Physiol 53b: 375–380CrossRefGoogle Scholar
  25. Eastman JT, DeVries AL (1986) Renal glomerular evolution in antarctic notothenioid fishes. J Fish Biol 29: 649–662CrossRefGoogle Scholar
  26. Eastman JT, DeVries AL, Coalson RE, Nordquist RE, Boyd RB (1979) Renal conservation of antifreeze peptide in antarctic eel pout, Rhigophila dearborni. Nature (Lond) 282: 217–218CrossRefGoogle Scholar
  27. Fletcher GL, Hew CL, Joshi SB (1982) Isolation and characterization of antifreeze glycopeptides from the frost fish, Microgadus tomcod. Can J Zool 60: 348–355CrossRefGoogle Scholar
  28. Fletcher GL, Hew CL, Li X, Haya K, Kao MH (1985) Year-round presence of high levels of plasma antifreeze peptides in a temperate fish, ocean pout (Macrozoarces americanus). Can J Zool 63: 488–493CrossRefGoogle Scholar
  29. Fletcher NH (1970) The chemical physics of ice. Cambridge Univ Press, Cambridge, p 11CrossRefGoogle Scholar
  30. Gourlie B, Lin Y, Powers D, DeVries AL, Huang RC (1984) Winter flounder antifreeze protein: evidence for a multigene family. J Biol Chem 259: 14960–14965PubMedGoogle Scholar
  31. Hew CL, Joshi S, Wang NC, Kao MH, Ananthanaryanan VS (1985) Structures of shorthorn sculpin antifreeze polypeptides. Eur J Biochem 151: 167–172PubMedCrossRefGoogle Scholar
  32. Hew CL, Chakrabartty A, Yang D (1987) Biochemical adaptation to the freezing environment structure-function relationship of antifreeze polypeptides. In: Kon OL et al. (eds) Integration and control of metabolic processes. ICSU Press Symp Ser 7, Cambridge Univ Press, Cambridge, pp 299–309Google Scholar
  33. Hew CL, Wang NC, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL (1988) Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem 263: 12409–12055Google Scholar
  34. Hudson AP, DeVries AL, Haschemeyer AEV (1979) Antifreeze glycoprotein biosynthesis in antarctic fishes. Comp Biochem Physiol 62B: 179–183CrossRefGoogle Scholar
  35. Hsaio K, Cheng CC, Fernandes IE, Detrich HW, DeVries AL (1990) An antifreeze glycopeptide gene from the antarctic cod Notothenia coriiceps neglecta encodes a polyprotein of high peptide copy number. Proc Nati Acad Sci USA 87: 9265–9269CrossRefGoogle Scholar
  36. Knight CA, DeVries AL (1988) The prevention of ice crystal growth from water by “antifreeze proteins”. In: Wagner PE, Valli G (eds) Atmospheric aerosol and nucleation. Springer, Berlin Heidelberg New York, p 717CrossRefGoogle Scholar
  37. Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature (Lond) 308: 295–296CrossRefGoogle Scholar
  38. Knight CA, Cheng CC, DeVries AL (1991) Adsorption of a-helical antifreeze peptides on specific ice crystal surface planes. Biophys J 59: 409–418PubMedCrossRefGoogle Scholar
  39. Komatsu SK, DeVries AL, Feeney RE(1970) Studies of the structure of the freezing point-depressing glycoproteins from an antarctic fish. J Biol Chem 245: 2901–2908Google Scholar
  40. Leim AH, Scott WB (1966) Fishes of the Atlantic coast of Canada. Fish Res Board Can, Ottawa, 357 ppGoogle Scholar
  41. Li XM, Trinh KY, Hew CL, Buettner B, Baenziger J, Davies PL (1985) Structure of an antifreeze polypeptide and its precursor from the ocean pout, Macrozoarces americanus. J Biol Chem 260: 12904–12909PubMedGoogle Scholar
  42. Lin Y, Duman JG, DeVries AL (1972) Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish. Biochim Biophys Res Commun 46: 87–92CrossRefGoogle Scholar
  43. Lin Y, Raymond JA, Duman JG, DeVries AL (1976) Compartmentalization of NaC1 in frozen solutions of antifreeze glycoproteins. Cryobiology 13: 334–340PubMedCrossRefGoogle Scholar
  44. Littlepage JL (1965) Oceanographic investigations in McMurdo Sound, Antarctica. In: Llano GA (ed) Antarctic research series, vol 5, Biology of antarctic seas II. Am Geophys Union, Washington DC, plGoogle Scholar
  45. Morris HR, Thompson MR, Osuga DT, Ahmed AI, Chan SM, Vandenheede JR, Feeney RE (1978) Antifreeze glycoproteins from the blood of an Antarctic fish. J Biol Chem 253: 5155–5162PubMedGoogle Scholar
  46. Moyle PB, Cech JJ (1988) Fishes — an introduction to ichthyology. Prentice Hall, Englewood Cliffs New York, p 479Google Scholar
  47. Ng N, Trinh YK, Hew CL (1986) Structure of an antifreeze polypeptide precursor from the sea raven, Hemitripterus americanus. J Biol Chem 261: 15690–15696PubMedGoogle Scholar
  48. O’Grady SM, Clarke A, DeVries AL (1982a) Characterization of glycoprotein antifreeze biosynthesis in isolated hepatocytes from Pagothenia borchgrevinki. J Exp Zool 220: 179–189PubMedCrossRefGoogle Scholar
  49. O’Grady SM, Ellory JC, DeVries AL (19826) Protein and glycoprotein antifreezes in the intestinal fluid of polar fishes. J Exp Biol 98: 429–438Google Scholar
  50. O’Grady SM, Schrag JD, Raymond JA, DeVries AL (1982e) Comparison of antifreeze glycopeptides from arctic and antarctic fishes. J Exp Zool 224: 177–185CrossRefGoogle Scholar
  51. O’Grady SM, Ellory JC, DeVries AL (1983) The role of low molecular weight antifreeze glycopeptides in the bile and intestinal fluid of antarctic fishes. J Exp Biol 104: 149–162Google Scholar
  52. Osuga DT, Feeney RE (1978) Antifreeze glycoproteins from arctic fish. J Biol Chem 253: 5338–5343PubMedGoogle Scholar
  53. Petzel D, Reisman H, DeVries AL (1980) Seasonal variation of antifreeze peptide in the winter flounder, Pseudopleuronectes americanus. J Exp Zool 211: 63–69CrossRefGoogle Scholar
  54. Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74: 2589–2593PubMedCrossRefGoogle Scholar
  55. Raymond JA, Lin Y, DeVries AL (1975) Glycoproteins and protein antifreeze in two Alaskan fishes. J Exp Zoo1193: 25–130Google Scholar
  56. Raymond JA, Radding W, DeVries AL (1977) Circular dichroism of protein and glycoprotein fish antifreeze. Biopolymcrs 16: 2575–2578CrossRefGoogle Scholar
  57. Raymond JA, Wilson P, DeVries AL (1989) Inhibition of growth of non-basal planes in ice by fish antifreezes. Proc Nati Acad Sci 86: 881–885CrossRefGoogle Scholar
  58. Reisman HM, Fletcher GL, Kao MH, Shears MA (1987) Antifreeze proteins in the grubby sculpin, Myoxocephalus aenaeus, and the tomcod, Microgadus tomcod. Environ Biol Fish 18: 295–301CrossRefGoogle Scholar
  59. Scholander PF, Flaff W, Hock RJ, Irving L (1953) Studies on the physiology of frozen plants and animals in the arctic. J Cell Comp Physiol 42: 1–56Google Scholar
  60. Scholander PF, Vandam L, Kanwisher JW, Hammel HT, Gordon MS (1957) Supercooling and osmoregulation in arctic fish. J Cell Comp Physiol 49: 5–24CrossRefGoogle Scholar
  61. Schrag JD, O’Grady SM, DeVries AL (1982) Relationship of amino acid composition and molecular weight of antifreeze glycopeptides to noncolligative freezing point depression. Biochim Biophys Acta 717: 322–326PubMedCrossRefGoogle Scholar
  62. Schrag JD, Cheng CC, Panico M, Morris HR, DeVries AL (1987) Primary and secondary structure of antifreeze peptides from arctic and antarctic zoarcid fishes. Biochim Biophys Acta 915: 357–370PubMedCrossRefGoogle Scholar
  63. Scott GK, Hew CL, Davies PL (1985) Antifreeze protein genes are tandemly linked and clustered in the genome of the winter flounder. Proc Natl Acad Sci USA 82: 2613–2617PubMedCrossRefGoogle Scholar
  64. Scott GK, Davies PL, Shears MA, Fletcher GL (1987) Structural variations in the alanine-rich antifreeze proteins of the pleuronectinae. Eur J Biochem 168: 629–633PubMedCrossRefGoogle Scholar
  65. Scott GK, Hayes PH, Fletcher GL, Davies PL (1988) Wolffish antifreeze protein genes are primarily organized as tandem repeats that each contain two genes in inverted orientation. Mol Cell Biol 8: 3670–3675PubMedGoogle Scholar
  66. Shier WT, Lin Y, DeVries AL (1972) Structure and mode of action of glycoproteins from an antarctic fish. Biochim Biophys Acta 263: 406–413PubMedGoogle Scholar
  67. Shier WT, Lin Y, DeVries AL (1975) Structure of the carbohydrate of antifreeze glycoproteins from an antarctic fish. FEBS Lett 54: 135–138PubMedCrossRefGoogle Scholar
  68. Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CL (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. J Biol Chem 256: 2022–2026PubMedGoogle Scholar
  69. Tien R, Wilson PW, DeVries AL (1991) Ice in antarctic fishes (submitted)Google Scholar
  70. Tomimatsu Y, Scherer J, Yeh Y, Feeney RE (1976) Raman spectra of a solid antifreeze glycoprotein and its liquid and frozen aqueous solutions. J Biol Chem 251: 2290–2298PubMedGoogle Scholar
  71. Turner JD, Schrag JD, DeVries AL (1985) Ocular freezing avoidance in antarctic fish. J Exp Biol 118: 121–131Google Scholar
  72. Van Voorhies WV, Raymond JA, DeVries AL (1978) Glycoproteins as biological antifreeze agents in the cod Gadus ogac ( Richardson ). Physiol Zool 51: 347–353Google Scholar
  73. Yang DSC, Sax M, Chakrabartty A, Hew CL (1988) Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature (Lond) 333: 232–237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • A. L. DeVries
    • 1
  • C.-H. C. Cheng
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations