Skip to main content

Structural Motifs of the Extracellular Matrix Proteins Laminin and Tenascin

  • Conference paper
Patterns in Protein Sequence and Structure

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 7))

Abstract

Laminin and tenascin are two major extracellular matrix glycoproteins. They both consist of large disulphide-linked subunits composed of multiple structural and functional domains which are reflected in a distinct pattern of sequence motifs. These molecules belong to different protein families for which more and more members are being discovered. Members of these families have been discovered down to the level of Anthomedusae laminin (cf. Beck et al., 1990) and leech tenascin (Masuda-Nakagawa et al., 1989). The molecular structure not only varies considerably between species but for laminin also differences depending on the state of development and tissue origin have been elucidated. Varying numbers of tenascin isoforms generated by alternative splicing are found during development and in different tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aumailley, M., Gerl, M., Sonnenberg, A., Deutzmann, R., and limpl, R. (1990). Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell- binding site being exposed in fragment P1. Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment PI. FEBS Lett., 262: 82–86.

    Article  PubMed  CAS  Google Scholar 

  • Beck, K. (1989). Structural model of vinculin: correlation of amino acid sequence with electron-microscopical shape. FEBS Lett., 249: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Beck, K., Hunter, I., and Engel, J. (1990). Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J., 4: 148–160.

    PubMed  CAS  Google Scholar 

  • Bruch, M., Landwehr, R., and Engel, J. (1989). Dissection of laminin by cathepsin G into its long arm and short arm structures and localization of regions involved in calcium dependent stabilization and self-association. Eur. J. Biochem., 185: 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet, M. (1989). Tenascin J1 cytotactin: the potential function of hexabrachion proteins in neural development. Dev. Neurosci., 11: 266–275.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet, M., Schenk, S., Beck, K., Nowotny, N., and Chiquet-Ehrismann, R. (1991). Protein domains of tenascin: the C-terminal 60k fragment binds to heparin and preferentially arise from the large isoform. J. Biol. Chem. Submitted.

    Google Scholar 

  • Chiquet-Ehrismann, R., Kalla, P., Pearson, C. A., Beck, K., and Chiquet, M. (1988). Tenascin interferes with fibronectin action. Cell, 53: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann, R., Mackie, E. J., Pearson, C. A., and Sakakura, T. (1986). Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell, 47: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Conway, J. E and Parry, D. A. D. (1990). Structural features in the heptad substructure and longer range repeats of two stranded a-fibrous proteins. Int. J. Biol. Macromol., 12: 328–334.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, R. M., Wilkinson, A. J., Baron, M., Pastore, A., Tappin, M. J., Campbell, I. D., Gregory, H., and Sheard, B. (1987). The solution structure of human epidermal growth factor. Nature, 327: 339–341.

    Article  PubMed  CAS  Google Scholar 

  • Dang, C. V., Ebert, R. F., and Bell, W. R. (1985). Localization of a fibrinogen calcium binding site between 7-subunit positions 311 and 336 by terbium fluorescence. J. Biol. Chem., 260: 9713–9719.

    PubMed  CAS  Google Scholar 

  • Deutzmann, R., Huber, H., Schmetz, K. A., OberMumer, I., and Hartl, L. (1988). Structural study of long arm fragments of laminin. evidence for repetitive C- terminal sequences in the A-chain, not present in the B-chains. Eur. J. Biochem., 177: 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R. F. (1984). Fibrinogen and fibrin. Annu. Rev. Biochem., 53: 195–229.

    Article  PubMed  CAS  Google Scholar 

  • Ekblom, P. (1989). Developmentally regulated conversion of mesenchyme to epithelium. EASES J., 3: 2141–2150.

    CAS  Google Scholar 

  • Engel, J. (1989). EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation? FEBS Lett., 251: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Engel, J. and Furthmayr, H. (1987). Electron microscopy and other physical methods for the characterization of extracellular matrix components: laminin, fibronectin, collagen IV, collagen VI, and proteoglycans. Methods Enzymol., 145: 3–78.

    Article  PubMed  CAS  Google Scholar 

  • Engel, J., Odermatt, E., Engel, A., Madri, J. A., Furthmayr, H., Rohde, H., and Umpl, R. (1981). Shapes, domain organization and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J. Mol Biol., 120: 97–120.

    Article  Google Scholar 

  • Engel, J., Taylor, W., Paulsson, M., Sage, H., and Hogan, B. (1987). Calcium binding domains and calcium induced conformational transition of SPARC BM- 40 osteonectin, an extracellular glycoprotein expressed in mineralized and non-mineralized tissues. Biochemistry, 26: 6958–6965.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H. P. and Bourdon, M. A. (1989). Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. Annu. Rev. Cell Biol., 5: 71–92.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H. P. and Inglesias, J. L. (1984). A six-armed oligomer isolated from cell surface fibronectin preparations. Nature, 311: 267–269.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, H. P. and Lightner, V. A. (1988). Hexabrachion protein (tenascin, cytotactin, brachionectin) in connective tissues, embryonic brain and tumors. In Miller, K. R., editor, Advances in Cell Biology, pages 55–90. London, JAI.

    Google Scholar 

  • Friedlander, D. R., Hoffman, S., and Edelman, D. M. (1988). Functional mapping of cytotactin: proteolytic fragments active in cell substrate adhesion. J. Cell Biol., 107: 2329–2340.

    Article  PubMed  CAS  Google Scholar 

  • Gershagen, S., Fernlund, P., and Lundwall, A. (1987). A cDNA coding for human sex hormone binding globulin, homology to vitamin K-dependent protein S. FEBS Lett., 220: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Graf, J., Iwamoto, Y., Sasaki, M., Martin, G. R., Kleinman, H. K., Robey, F. A., and Yamada, Y. (1987). Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis and receptor binding. Cell, 48: 989–996.

    Article  PubMed  CAS  Google Scholar 

  • Hautanen, A., Gailit, J., Mann, D. M., and Ruoslahti, E. (1989). Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J. Cell Biol, 264: 1437–1442.

    CAS  Google Scholar 

  • Holland, S. K. and Blacke, C. C. F. (1989). Multi–domain proteins: towards complete structures. In Aebi, U. and Engel, J., editors, Cytoskeletal and Extracellular Proteins, pages 137–139. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Hunter, D. D., Shah, V., Merlie, J. P., and Sanes, J. R. (1989). A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature, 338: 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Jones, F. S., Hoffman, S., Cunningham, B. A., and Edelman, G. M. (1989). A detailed structural model of eytotactin: protein homologies, alternative splicing, and binding regions. Proc. Natl Acad. Sci. USA, 86: 1905–1909.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, T., Hall, L. R., Haser, W. G., Tonegawa, S., and Saito, H. (1987). Structure of a cytotactic T-lymphocyte-specific gene shows a strong homology to fibrinogen β3 and γ chains. Proc. Natl Acad. Sci. USA, 84: 1609–1613.

    Article  PubMed  CAS  Google Scholar 

  • Labeit, S., Barlow, D. R, Gautel, M., Gibson, T., Holt, J., Hsieh, C.-L., Francke, U., Leonard, K., Wardale, J., Whiting, A., and Trinick, J. (1990). A regular pattern of two types of 100-residue motif in the sequence of titin. Nature, 345: 273 — 276.

    Article  PubMed  CAS  Google Scholar 

  • Masuda-Nakagawa, L., Beck, K., and Chiquet, M. (1989). Identification of molecules in leech extracellular matrix that promote neurite outgrowth. Proc. R. Soc. Lond. B, 235: 247–257.

    Article  Google Scholar 

  • Morel, Y., Bristow, J., Gitelman, S. E., and Miller, W. L. (1989). Transcript encoded on the opposite strand of the human steroid 21-hydroxylase complement component C4 gene locus. Proc. Natl Acad. Sci. USA, 86: 6582–6586.

    Article  PubMed  CAS  Google Scholar 

  • Nave, R., Fiirst, D. O., and Weber, K. (1989). Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M-band anchoring domain? J. Cell Biol, 109: 2177–2187.

    Article  PubMed  CAS  Google Scholar 

  • Norton, R A., Hynes, R. O., and Rees, D. J. G. (1990). Sevenless: seven found? Cell, 61: 15–16.

    Article  PubMed  CAS  Google Scholar 

  • Panayotou, G., End, P., Aumailley, M., Timpl, R., and Engel, J. (1989). Domains of laminin with growth–factor activity. Cell, 56: 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Parry, D. A. D. (1982). Coiled-coils in a-helix containing proteins: analysis of the residue types within the heptad repeat and the use of these data in the prediction of coiled-coils in other proteins. Biosci. Rep., 2: 1017–1024.

    Article  PubMed  CAS  Google Scholar 

  • Patthy, L. (1990). Homology of a domain of the growth hormone/prolactin receptor family with type HI modules of fibronectin. Cell, 61: 13–14.

    Article  PubMed  CAS  Google Scholar 

  • Paulsson, M., Deutzmann, R., Timpl, R., Dalzoppo, D., Odermatt, E., and Engel, J. (1985). Evidence for coiled-coil a-helical regions in the long arm of laminin. EMBO J., 4: 309–316.

    PubMed  CAS  Google Scholar 

  • Spring, J., Beck, K., and Chiquet-Ehrismann, R. (1989). Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell, 59: 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Szebenyi, D. M. E. and Moffat, K. (1986). The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J. Biol. Chem., 261: 8761–8777.

    PubMed  CAS  Google Scholar 

  • Timpl, R. (1989). Structure and biological activity of basement membrane proteins. Eur. J. Biochem., 180: 487–502.

    Article  PubMed  CAS  Google Scholar 

  • Timpl, R., Aumailley, M., Gerl, M., Mann, K., Nurcombe, V., Edgar, D., and Deutzmann, R. (1990). Structure and function of the laminin–nidogen complex. Ann. N. Y. Acad. Set., 580: 311–323.

    Article  CAS  Google Scholar 

  • Xu, X. and Doolittle, R. F. (1990). Presence of a vertebrate fibrinogen-like sequence in an echinoderm. Proc. Natl. Acad. Sci. USA, 87: 2097–2101.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beck, K., Spring, J., Chiquet-Ehrismann, R., Engel, J., Chiquet, M. (1992). Structural Motifs of the Extracellular Matrix Proteins Laminin and Tenascin. In: Taylor, W.R. (eds) Patterns in Protein Sequence and Structure. Springer Series in Biophysics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76637-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76637-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76639-8

  • Online ISBN: 978-3-642-76637-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics