Structural Motifs of the Extracellular Matrix Proteins Laminin and Tenascin

  • Konrad Beck
  • Jürg Spring
  • Ruth Chiquet-Ehrismann
  • Jürgen Engel
  • Matthias Chiquet
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 7)


Laminin and tenascin are two major extracellular matrix glycoproteins. They both consist of large disulphide-linked subunits composed of multiple structural and functional domains which are reflected in a distinct pattern of sequence motifs. These molecules belong to different protein families for which more and more members are being discovered. Members of these families have been discovered down to the level of Anthomedusae laminin (cf. Beck et al., 1990) and leech tenascin (Masuda-Nakagawa et al., 1989). The molecular structure not only varies considerably between species but for laminin also differences depending on the state of development and tissue origin have been elucidated. Varying numbers of tenascin isoforms generated by alternative splicing are found during development and in different tissues.


Globular Domain Cyanogen Bromide Heptad Repeat Calcium Binding Site Fibronectin Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumailley, M., Gerl, M., Sonnenberg, A., Deutzmann, R., and limpl, R. (1990). Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell- binding site being exposed in fragment P1. Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment PI. FEBS Lett., 262: 82–86.PubMedCrossRefGoogle Scholar
  2. Beck, K. (1989). Structural model of vinculin: correlation of amino acid sequence with electron-microscopical shape. FEBS Lett., 249: 1–4.PubMedCrossRefGoogle Scholar
  3. Beck, K., Hunter, I., and Engel, J. (1990). Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J., 4: 148–160.PubMedGoogle Scholar
  4. Bruch, M., Landwehr, R., and Engel, J. (1989). Dissection of laminin by cathepsin G into its long arm and short arm structures and localization of regions involved in calcium dependent stabilization and self-association. Eur. J. Biochem., 185: 271–279.PubMedCrossRefGoogle Scholar
  5. Chiquet, M. (1989). Tenascin J1 cytotactin: the potential function of hexabrachion proteins in neural development. Dev. Neurosci., 11: 266–275.PubMedCrossRefGoogle Scholar
  6. Chiquet, M., Schenk, S., Beck, K., Nowotny, N., and Chiquet-Ehrismann, R. (1991). Protein domains of tenascin: the C-terminal 60k fragment binds to heparin and preferentially arise from the large isoform. J. Biol. Chem. Submitted.Google Scholar
  7. Chiquet-Ehrismann, R., Kalla, P., Pearson, C. A., Beck, K., and Chiquet, M. (1988). Tenascin interferes with fibronectin action. Cell, 53: 383–390.PubMedCrossRefGoogle Scholar
  8. Chiquet-Ehrismann, R., Mackie, E. J., Pearson, C. A., and Sakakura, T. (1986). Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell, 47: 131–139.PubMedCrossRefGoogle Scholar
  9. Conway, J. E and Parry, D. A. D. (1990). Structural features in the heptad substructure and longer range repeats of two stranded a-fibrous proteins. Int. J. Biol. Macromol., 12: 328–334.PubMedCrossRefGoogle Scholar
  10. Cooke, R. M., Wilkinson, A. J., Baron, M., Pastore, A., Tappin, M. J., Campbell, I. D., Gregory, H., and Sheard, B. (1987). The solution structure of human epidermal growth factor. Nature, 327: 339–341.PubMedCrossRefGoogle Scholar
  11. Dang, C. V., Ebert, R. F., and Bell, W. R. (1985). Localization of a fibrinogen calcium binding site between 7-subunit positions 311 and 336 by terbium fluorescence. J. Biol. Chem., 260: 9713–9719.PubMedGoogle Scholar
  12. Deutzmann, R., Huber, H., Schmetz, K. A., OberMumer, I., and Hartl, L. (1988). Structural study of long arm fragments of laminin. evidence for repetitive C- terminal sequences in the A-chain, not present in the B-chains. Eur. J. Biochem., 177: 35–45.PubMedCrossRefGoogle Scholar
  13. Doolittle, R. F. (1984). Fibrinogen and fibrin. Annu. Rev. Biochem., 53: 195–229.PubMedCrossRefGoogle Scholar
  14. Ekblom, P. (1989). Developmentally regulated conversion of mesenchyme to epithelium. EASES J., 3: 2141–2150.Google Scholar
  15. Engel, J. (1989). EGF-like domains in extracellular matrix proteins: localized signals for growth and differentiation? FEBS Lett., 251: 1–7.PubMedCrossRefGoogle Scholar
  16. Engel, J. and Furthmayr, H. (1987). Electron microscopy and other physical methods for the characterization of extracellular matrix components: laminin, fibronectin, collagen IV, collagen VI, and proteoglycans. Methods Enzymol., 145: 3–78.PubMedCrossRefGoogle Scholar
  17. Engel, J., Odermatt, E., Engel, A., Madri, J. A., Furthmayr, H., Rohde, H., and Umpl, R. (1981). Shapes, domain organization and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J. Mol Biol., 120: 97–120.CrossRefGoogle Scholar
  18. Engel, J., Taylor, W., Paulsson, M., Sage, H., and Hogan, B. (1987). Calcium binding domains and calcium induced conformational transition of SPARC BM- 40 osteonectin, an extracellular glycoprotein expressed in mineralized and non-mineralized tissues. Biochemistry, 26: 6958–6965.PubMedCrossRefGoogle Scholar
  19. Erickson, H. P. and Bourdon, M. A. (1989). Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. Annu. Rev. Cell Biol., 5: 71–92.PubMedCrossRefGoogle Scholar
  20. Erickson, H. P. and Inglesias, J. L. (1984). A six-armed oligomer isolated from cell surface fibronectin preparations. Nature, 311: 267–269.PubMedCrossRefGoogle Scholar
  21. Erickson, H. P. and Lightner, V. A. (1988). Hexabrachion protein (tenascin, cytotactin, brachionectin) in connective tissues, embryonic brain and tumors. In Miller, K. R., editor, Advances in Cell Biology, pages 55–90. London, JAI.Google Scholar
  22. Friedlander, D. R., Hoffman, S., and Edelman, D. M. (1988). Functional mapping of cytotactin: proteolytic fragments active in cell substrate adhesion. J. Cell Biol., 107: 2329–2340.PubMedCrossRefGoogle Scholar
  23. Gershagen, S., Fernlund, P., and Lundwall, A. (1987). A cDNA coding for human sex hormone binding globulin, homology to vitamin K-dependent protein S. FEBS Lett., 220: 129–135.PubMedCrossRefGoogle Scholar
  24. Graf, J., Iwamoto, Y., Sasaki, M., Martin, G. R., Kleinman, H. K., Robey, F. A., and Yamada, Y. (1987). Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis and receptor binding. Cell, 48: 989–996.PubMedCrossRefGoogle Scholar
  25. Hautanen, A., Gailit, J., Mann, D. M., and Ruoslahti, E. (1989). Effects of modifications of the RGD sequence and its context on recognition by the fibronectin receptor. J. Cell Biol, 264: 1437–1442.Google Scholar
  26. Holland, S. K. and Blacke, C. C. F. (1989). Multi–domain proteins: towards complete structures. In Aebi, U. and Engel, J., editors, Cytoskeletal and Extracellular Proteins, pages 137–139. Heidelberg: Springer-Verlag.Google Scholar
  27. Hunter, D. D., Shah, V., Merlie, J. P., and Sanes, J. R. (1989). A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature, 338: 229–234.PubMedCrossRefGoogle Scholar
  28. Jones, F. S., Hoffman, S., Cunningham, B. A., and Edelman, G. M. (1989). A detailed structural model of eytotactin: protein homologies, alternative splicing, and binding regions. Proc. Natl Acad. Sci. USA, 86: 1905–1909.PubMedCrossRefGoogle Scholar
  29. Koyama, T., Hall, L. R., Haser, W. G., Tonegawa, S., and Saito, H. (1987). Structure of a cytotactic T-lymphocyte-specific gene shows a strong homology to fibrinogen β3 and γ chains. Proc. Natl Acad. Sci. USA, 84: 1609–1613.PubMedCrossRefGoogle Scholar
  30. Labeit, S., Barlow, D. R, Gautel, M., Gibson, T., Holt, J., Hsieh, C.-L., Francke, U., Leonard, K., Wardale, J., Whiting, A., and Trinick, J. (1990). A regular pattern of two types of 100-residue motif in the sequence of titin. Nature, 345: 273 — 276.PubMedCrossRefGoogle Scholar
  31. Masuda-Nakagawa, L., Beck, K., and Chiquet, M. (1989). Identification of molecules in leech extracellular matrix that promote neurite outgrowth. Proc. R. Soc. Lond. B, 235: 247–257.CrossRefGoogle Scholar
  32. Morel, Y., Bristow, J., Gitelman, S. E., and Miller, W. L. (1989). Transcript encoded on the opposite strand of the human steroid 21-hydroxylase complement component C4 gene locus. Proc. Natl Acad. Sci. USA, 86: 6582–6586.PubMedCrossRefGoogle Scholar
  33. Nave, R., Fiirst, D. O., and Weber, K. (1989). Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M-band anchoring domain? J. Cell Biol, 109: 2177–2187.PubMedCrossRefGoogle Scholar
  34. Norton, R A., Hynes, R. O., and Rees, D. J. G. (1990). Sevenless: seven found? Cell, 61: 15–16.PubMedCrossRefGoogle Scholar
  35. Panayotou, G., End, P., Aumailley, M., Timpl, R., and Engel, J. (1989). Domains of laminin with growth–factor activity. Cell, 56: 93–101.PubMedCrossRefGoogle Scholar
  36. Parry, D. A. D. (1982). Coiled-coils in a-helix containing proteins: analysis of the residue types within the heptad repeat and the use of these data in the prediction of coiled-coils in other proteins. Biosci. Rep., 2: 1017–1024.PubMedCrossRefGoogle Scholar
  37. Patthy, L. (1990). Homology of a domain of the growth hormone/prolactin receptor family with type HI modules of fibronectin. Cell, 61: 13–14.PubMedCrossRefGoogle Scholar
  38. Paulsson, M., Deutzmann, R., Timpl, R., Dalzoppo, D., Odermatt, E., and Engel, J. (1985). Evidence for coiled-coil a-helical regions in the long arm of laminin. EMBO J., 4: 309–316.PubMedGoogle Scholar
  39. Spring, J., Beck, K., and Chiquet-Ehrismann, R. (1989). Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell, 59: 325–334.PubMedCrossRefGoogle Scholar
  40. Szebenyi, D. M. E. and Moffat, K. (1986). The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J. Biol. Chem., 261: 8761–8777.PubMedGoogle Scholar
  41. Timpl, R. (1989). Structure and biological activity of basement membrane proteins. Eur. J. Biochem., 180: 487–502.PubMedCrossRefGoogle Scholar
  42. Timpl, R., Aumailley, M., Gerl, M., Mann, K., Nurcombe, V., Edgar, D., and Deutzmann, R. (1990). Structure and function of the laminin–nidogen complex. Ann. N. Y. Acad. Set., 580: 311–323.CrossRefGoogle Scholar
  43. Xu, X. and Doolittle, R. F. (1990). Presence of a vertebrate fibrinogen-like sequence in an echinoderm. Proc. Natl. Acad. Sci. USA, 87: 2097–2101.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Konrad Beck
    • 1
  • Jürg Spring
    • 2
  • Ruth Chiquet-Ehrismann
    • 2
  • Jürgen Engel
    • 3
  • Matthias Chiquet
    • 3
  1. 1.Institute for BiophysicsJohannes-Kepler-UniversityAustria
  2. 2.Friedrich-Miescher-InstitutBaselSwitzerland
  3. 3.Department of Biophysical ChemistryBiocenter of the UniversityBaselSwitzerland

Personalised recommendations