Skip to main content

Detection of Residual Leukemic Cells in AML

  • Conference paper
Acute Leukemias

Abstract

Sixty to seventy percent of adult patients with newly diagnosed AML can achieve a complete remission (CR) through intensive chemotherapy [1–6]. However, the majority of these patients will suffer relapse within 2 years. With the exception of age, secondary leukemias, and a small group of cytogenetically defined AML, no universelly accepted prognostic marker has been identified which would allow early treatment stratification. Thus AML treatment is highly uniform, consisting of intensive induction chemotherapy, followed by consolidating postremission therapy with or without bone marrow transplantation. The “gold standard” for the diagnosis of AML and therapy monitoring is the light microscopic evaluation of cytology and cytochemistry. Its sensitivity for the detection of residual leukemic cells is 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rai KR, Holland JF, Gliedewell OJ et al. (1981) Treatment of acute myelocytic leukemia: a study by Cancer and Leukemia Group B. Blood 58: 1203–1212

    PubMed  CAS  Google Scholar 

  2. Büchner T, Urbanitz D, Hiddemann Wet (1985) Intensified induction and consodilation with or without maintenance chemotherapy for acute myeloid leukemia (AML) (1985). Two multicenter studies of the Ger- 13. man AML Cooperative Group. J Clin Oncol 3: 1583–1589

    Google Scholar 

  3. Preisler H, Davis RB, Kirshner Jet al. (1987) Comparison of three remission induction regimens and two post-induction strategies for the treatment of acute nonlymphocytic leukemia: a Cancer and Leukemia Group B Study. Blood 69: 1441–1449

    PubMed  CAS  Google Scholar 

  4. Cassileth PA, Harrington DP, Hines JD, Oken MM, Mazza JJ, McGlave P, Bennett JM, O’Connell MJ (1988) Maintenance chemotherapy prolongs remission duration in adult acute nonlymphocytic leukemia. J Clin Oncol 6: 583

    PubMed  CAS  Google Scholar 

  5. Kurrle E, Ehninger G, Fackler-Schwalbe E, Freund M et al. (1990) Consolidation therapy with high-dose arabinoside: experiences of a prospective study in acute myeloid leukemia. In: Büchner T, Schellong G, Hiddemann W, Ritter J (eds) Acute leukemias II. Springer, Berlin Heidelberg New York, pp 254–260

    Google Scholar 

  6. Büchner T, Hiddemann W, Blasius S et al. (1990) Adult AML: the role of chemotherapy intensity and duration. Two studies of the AMLCG. In: Büchner T, Schellong G, Hiddemann W, Ritter J (eds) Acute leukemias II. Springer, Berlin Heidelberg New York, pp 261–266

    Google Scholar 

  7. Martens AC, Hagenbeck A (1985) Detection of minimal disease in acute leukemia using flow cytometry: studies in a rat model for human acute leukemia. Cytometry 6: 342–347

    Article  PubMed  CAS  Google Scholar 

  8. Foon KA, Gale RP, Todd RF 3d (1986) Recent advances in the immunologic classification of leukemia. Semin Hematol 23: 257–283

    PubMed  CAS  Google Scholar 

  9. Neame PB, Soamboonsrup P, Browman GP, Meyer RM, Benger A, Wilson WE, Walker IR, Saeed N, McBride JA (1986) Classifying acute leukemia by immunophenotyping: a combined FAB-immunologic classification of AML. Blood 68: 1355–1362

    PubMed  CAS  Google Scholar 

  10. Griffin JD, Davis R, Nelson DA, Davis FR, Mayer RJ, Schiffer C, McIntyre OR, Bloomfield CD (1986) Use of surface marker analysis to predict outcome of adult acute myeloblastic leukemia. Blood 68: 1232–1241

    PubMed  CAS  Google Scholar 

  11. White DL, Ashman LK, Dart GW, Zola H, Toogood IR, Kimber RJ (1987) The expression of mature myeloid cell differentiation markers in acute leukemia. Pathology 19: 137–142

    Article  PubMed  CAS  Google Scholar 

  12. Drexler HG (1987) Classification of acute myeloid leukemias — a comparison of FAB and immunophenotyping. Leukemia 1: 697–705

    PubMed  CAS  Google Scholar 

  13. Terstappen LWMM, Safford M, Loken MR (1990) Flow cytometric analysis of human bone marrow. III. Neutrophil maturation. Leukemia 4: 657–663

    Google Scholar 

  14. Loken MR, Shah VO, Dattilio KL, Civin CI (1987) Flow cytometric analysis of human bone marrow: I. Normal erythroid development. Blood 69: 255–263

    Google Scholar 

  15. Loken MR, Shah VO, Dattilio KL, Civin CI (1987) Flow cytometric analysis of human bone marrow: II. Normal B lymphocyte development. Blood 70: 1316–1324

    Google Scholar 

  16. LeBien TW, Wörmann B, Villablanca JG, Law CL, Steinberg LM, Shah VO, Loken MR (1990) Multiparameter flow cytometric analysis of human fetal bone marrow B cells. Leukemia 4: 354–358

    PubMed  CAS  Google Scholar 

  17. Delwel R, van Gurp R, Bot F, Touw I, Löwenberg B (1988) Phenotyping of acute myelocytic leukemia (AML) progenitors: an approach for tracing minimal numbers of AML cells among normal bone marrow. Leukemia 2: 814

    PubMed  CAS  Google Scholar 

  18. Terstappen LWMM, Loken MR (1990) Myeloid cell differentiation in normal bone marrow and acute myeloid leukemia assessed by multi-dimensional flow cytometry. Anal Cell Pathol 2: 229–240

    PubMed  CAS  Google Scholar 

  19. Campana D, Coustan-Smith E, Janossy G (1990) The immunologic detection of minimal residual disease in acute leukemia. Blood 76: 163–171

    PubMed  CAS  Google Scholar 

  20. Brunsting A, Mullaney PF (1972) Light scattering from coated spheres: model for biological cells. Appl Optics 11: 675–680

    Article  CAS  Google Scholar 

  21. Salzman GC, Growell JM, Martin JC (1975) Cell classification by laser light scattering: identification and separation of unstained leukocytes. Acta Cytol 19: 374–377

    PubMed  CAS  Google Scholar 

  22. Gerhartz HH, Schmertzer H (1990) Detection of minimal residual disease in acute myeloid leukemia. Leukemia 14: 508–516

    Google Scholar 

  23. Knapp W, Dörken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, von dem Borne AEGK (eds) (1989) Leukocyte Typing I V. W hite Cell differentiation Antigens. Oxford University Press, New York

    Google Scholar 

  24. Knapp W, Dörken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, von dem Borne AEGK (eds) (1989) Leukocyte Typing I V. W hite Cell differentiation Antigens. Oxford University Press, New York

    Google Scholar 

  25. Barlogie B, Hittelman W, Spitzer G, Hart JS, Trujillo JM, Smallwood L, Drewinko B (1977) Correlation of DNA distribution abnormalities with cytogenetic findings in human adult leukemia and lymphoma. Cancer Res 37: 4400–4407

    PubMed  CAS  Google Scholar 

  26. Andreeff M, Redner A, Thongprasert S, Eagle B, Steinherz P, Miller D, Melamed MR (1985) Multiparameter flow cytometry for determination of ploidy, proliferation and differentiation in acute leukemia: treatment effects and prognostic value. In: Büchner T, Bloomfield CD, Hiddemann W, Hossfeld DK, Schumann J (eds) Tumor aneuploidy. Springer, Berlin Heidelberg New York, pp 81–105

    Google Scholar 

  27. Hiddemann W, Wörmann B, Göhde W, Büchner T (1986) DNA aneuploidies in adult patients with acute myeloid leukemia (1986) Incidence and relation to patient characteristics and morphologic subtypes. Cancer 57: 2146–2152

    CAS  Google Scholar 

  28. Arthur DC, Berger R, Golomb HM, Swans-bury GJ, Reeves BR, Alimena G, van den Berghe H, Bloomfield CD, de la Chapelle A, Dewalt GW, Garson OM, Hagemeijer A, Kaneko Y, Mitelman F, Pierre KV, Ruutu T, Sakurai M, Lawler SD, Rowley JD (1989) The clinical significance of karyotype in acute myelogenous leukemia. Cancer Genet Cytogenet 40: 203

    CAS  Google Scholar 

  29. Borrow J, Goddard AD, Sheer D, Solomon E (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249: 1577–1580

    Article  PubMed  CAS  Google Scholar 

  30. de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15; 17) translocation of acute promyelocytic leukaemia fuses the retinoic receptor alpha gene to a novel transcribed locus. Nature 347: 558–561

    Article  PubMed  Google Scholar 

  31. Biondi A, Longo L, Rambaldi A, Pandolfi PP, Mencarelli A, LoCoco F, Diverio D, Pegoraro L, Avanzi G, Donti E, Zangrilli D, Alcalay M, Barbui T, Masera G, Grignani F, Pelicci PG (1990) Molecular analysis of the t(15; 17) in acute promyelocytic leukemia: rearrangements and aberrant expression of the retinoic acid receptor alpha (RAR alpha) gene. Blood [Suppl] 76: 227 (abstract 898)

    Google Scholar 

  32. Von Lindern M, Poustka A, Lerach H, Grosveld G (1990) The (6; 9) chromosome translocation, associated with a specific subtype of acute nonlymphocytic leukemia, leads to aberrant transcription of a target gene on 9q34. Mol Cell Biol 10: 4016–4026

    Google Scholar 

  33. Arthur DC, Bloomfield CD (1983) Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association. Blood 61: 994

    PubMed  CAS  Google Scholar 

  34. LeBeau MM (1983) Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med 309: 630

    Article  CAS  Google Scholar 

  35. Rowley JD, Testa JR (1982) Chromosome abnormalities in malignant hematologic diseases. Adv Cancer Res 36: 103

    Article  PubMed  CAS  Google Scholar 

  36. Yunis JJ (1981) All patients with acute nonlymphocytic leukemia may have a chromosome defect. N Engl J Med 305: 135

    Article  PubMed  CAS  Google Scholar 

  37. Lee MS, Chang KS, Freireich EJ, Kantarjian HM, Talpaz M, Truhillo JM, Stass SA (1988) Detection of minimal residual bcr/abl transcripts by a modified polymerase chain reac tion. Blood 72: 893–897

    PubMed  CAS  Google Scholar 

  38. Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick F (1988) Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences ampli fied in vitro. Proc Natl Acad Sci USA 85: 5698

    Article  PubMed  CAS  Google Scholar 

  39. Cheng GY, Minden MD, Toyonaga B, Tak WM, McCulloch EA (1986) T-cell receptor and immunoglobulin gene rearrangements in acute myeloblastic leukemia. J Exp Med 163: 414

    Article  PubMed  CAS  Google Scholar 

  40. Rovigatti UY, Mirro J, Kitchingman G, Dahl G, Ochs J, Murphy S, Stass S (1986) Heavy chain immunoglobulin gene rearrangement in acute nonlymphocytic leukemia. Blood 63: 1023

    Google Scholar 

  41. Greenberg JM, Quertermous T, Seidman JG, Kersey JH (1986) Human T cell gamma chain rearrangement in acute lymphoid and nonlymphoid leukemia. Comparison with the T cell receptor beta chain gene. J Immu nol 137: 2043

    Google Scholar 

  42. Oster W, König K, Ludwig WD, Ganser A, Lindemann A, Mertelsmann R, Herrmann F (1988) Incidence of lineage promiscuity in acute myeloblastic leukemia: diagnostic implications of immunoglobulin and T-cell receptor gene rearrangement analysis and immunological phenotyping. Leuk Res 12: 887–895

    Article  PubMed  CAS  Google Scholar 

  43. Foa R, Casorati G, Giubellino MG, Basso G, Schiro R, Pizzolo G, Lauria F, LeFrance MP, Rabbitts TH, Migone N (1987) Rearrange ments of immunoglobulin and T-cell receptor beta and gamma genes are associated with terminal deoxynucleotidyl transferase expression in acute myeloid leukemia. J Exp Med 165: 879

    Article  PubMed  CAS  Google Scholar 

  44. Hansen-Hagge TE, Yokota S, Bartram CR (1989) Detection of minimal residual disease in acute lymphoblastic leukemia by an in vitro amplification of rearranged T-cell receptor delta chain sequences. Blood 74: 1762

    PubMed  CAS  Google Scholar 

  45. Yamada M, Hudson S, Tomay O, Rovera G (1989) Detection of minimal disease in hematopoietic malignancies of the B-cell lineage by using third-complementary-deter- mining region ( CDR-III) specific probes. Proc Natl Acad Sci USA 86: 5123–5127

    Google Scholar 

  46. Yamada M, Wasserman R, Lange B, Rei chard BA, Womer RB, Rovera G (1990) Minimal residual disease in childhood B lineage lymphoblastic leukemia — persistence of leukemic cells during the first 18 months of treatment. N Engl J Med 323: 448–455

    Article  PubMed  CAS  Google Scholar 

  47. Vogelstein B, Fearon ER, Hamilton SR, Feinberg AP (1985) Use of restriction frag-ment length polymorphisms to determine the clonal origin of human tumors. Science 27: 642

    Article  Google Scholar 

  48. Bartram CR, Ludwig WD, Hiddemann W, Lyons J, Buschle M, Ritter J, Harbott J, Fröhlich A, Janssen JW (1989) Acute mye- loid leukemia: analysis of ras gene mutations and clonality defined by polymorphic X-linked loci. Leukemia 3: 247–256

    PubMed  CAS  Google Scholar 

  49. Abrahamson G, Fraser NJ, Boyd J, Craig I, Wainscoat JS (1990) A highly informative X-chromosome probe, M27 beta, can be used for the determination of tumour clonality. Br J Haematol 74: 371–372

    Article  PubMed  CAS  Google Scholar 

  50. Hirai H, Tanaka S, Azuma M, Anraku Y, Kobayashi Y, Fujisawa M, OkabeT,Takaku F (1985) Transforming genes in human leu-kemia cells. Blood 66: 1371–1378

    CAS  Google Scholar 

  51. Bos JL, Toksoz D, Marshall CJ, deVries MV, Veeneman GH, van der Erb AJ, van Boom JH, Janssen JWG, Steenvoorden AC (1985) Amino acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukemia. Nature 315: 726–730

    Article  PubMed  CAS  Google Scholar 

  52. Gambke C, Hall A, Moroni C (1985) Acti-vation of an N-ras gene in acute myeloblastic leukemia through somatic mutation in the first exon. Proc Natl Acad Sci USA 82: 8798–8882

    Article  Google Scholar 

  53. Janssen JWG, Steenvoorden ACM, Lyons J, Anger B, Böhlke JU, Bos JL, Seliger H, Bartram CR (1987) Ras gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci USA 84: 9228

    Google Scholar 

  54. Preisler HD, Raza A (1987) Proto-oncogene transcript levels and acute nonlymphocytic leukemia. Semin Oncol 14: 207

    PubMed  CAS  Google Scholar 

  55. Preisler HD, Sato H, Yang P, Wilson M, Kaufman C, Watt R (1988) Assessment of c-myc expression in individual leukemic cells. Leuk Res 12: 507–516

    Article  PubMed  CAS  Google Scholar 

  56. Evinger-Hodges MJ, Spinolo JA, Spencer V, Vieto P, Dicke KA (1989) Detection of minimal residual disease in acute myeloge-nous leukemia by RNA-in situ hybridization. Bone Marrow Transplant 4 [Suppl 1]: 13–15

    PubMed  Google Scholar 

  57. Wörmann B, Könemann S, Safford M, Lok-en MR, Zurlutter K, Büchner T, Hiddemann W,Terstappen LWMM (1991) Selective elim-ination of leukemic subpopulations in acute myeloid leukemia through induction chemo-- therapy. To be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wörmann, B. et al. (1992). Detection of Residual Leukemic Cells in AML. In: Hiddemann, W., Büchner, T., Wörmann, B., Plunkett, W., Keating, M., Andreeff, M. (eds) Acute Leukemias. Haematology and Blood Transfusion / Hämatologie und Bluttransfusion, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76591-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76591-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53949-0

  • Online ISBN: 978-3-642-76591-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics