Advertisement

Chirality pp 166-179 | Cite as

Transition Metal Chemistry and Optical Activity — Werner-Type Complexes, Organometallic Compounds, Enantioselective Catalysis

  • H. Brunner

Abstract

Preparative transition metal chemistry was already well established in the last century. Thus, cis-PtCl2 (NH3)2, today worldwide the most powerful drug in the chemotherapy of human cancers, was discovered in 1844 [1]. The existence and separation of isomers, mainly cis/trans isomers in square planar or octahedral complexes, was the basis for Alfred Werner’s theory of coordination, acknowledged by the Nobel Prize 1913. Optical activity in transition metal chemistry came into play in 1911, when Alfred Werner resolved the octahedral complex [Co(en)2(NH3)Cl]2+ (Scheme 8.1) using bromocamphorsulfonate as the counterion [2].

Keywords

Optical Activity Chelate Ring Organometallic Compound Transition Metal Atom Ferrocene Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peyrone M (1844) Justus Liebigs Ann Chem 51: 1CrossRefGoogle Scholar
  2. 2.
    Werner A (1911) Ber dtsch them Ges 44: 1887CrossRefGoogle Scholar
  3. 3.
    Basolo F, Pearson G (1967) Mechanisms of inorganic reactions. Wiley, New York p 300Google Scholar
  4. 4.
    Saito Y, Nakatsu K, Shiro M, Kuroya H (1955) Acta Crystallogr 8: 729CrossRefGoogle Scholar
  5. 5.
    Hawkins CL (1971) Absolute Configuration of Metal Complexes. Wiley, New YorkGoogle Scholar
  6. 6.
    Saito Y (1979) Inorganic Molecular Dissymmetry. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Inorg Chem 9: 1Google Scholar
  8. 8.
    Zeise WC (1831) Pogg Ann 21: 497Google Scholar
  9. 9.
    Dewar MJS (1951) Bull Soc Chim Fr C71 Google Scholar
  10. 10.
    Chatt J, Duncanson LA (1953) J Chem Soc 2939Google Scholar
  11. 11.
    Thomson JB (1969) Tetrahedron Lett 26Google Scholar
  12. 12.
    Schlögl K (1967) Top Stereochem 1: 39CrossRefGoogle Scholar
  13. 13.
    Herberhold M Komplexe mit mono-olefinischen Liganden. Elsevier, Amsterdam, part 1 1972, part 2 1974Google Scholar
  14. 14.
    Brunner H (1969) Angew Chem 81: 395CrossRefGoogle Scholar
  15. Brunner H (1969) Angew Chem Int Ed Engl 8: 382CrossRefGoogle Scholar
  16. 15.
    Brunner H (1980) Adv Organomet Chem 18: 151Google Scholar
  17. 16.
    Brunner H (1979) Acc Chem Res 12: 250CrossRefGoogle Scholar
  18. 17.
    Akabori S, Sakurai S, Izumi Y, Fujii Y (1956) Nature 178: 323CrossRefGoogle Scholar
  19. 18.
    Nozaki H, Moriuti S, Takaya H, Noyori R (1966) Tetrahedron Lett 5239Google Scholar
  20. 19.
    Horner L, Siegel H, Blithe H (1968) Angew Chem 80: 1034CrossRefGoogle Scholar
  21. Horner L, Siegel H, Blithe H (1968) Int Ed Engl 7: 942CrossRefGoogle Scholar
  22. 20.
    Knowles WS, Sabacky MJ (1968) Chem Commun 1445Google Scholar
  23. 21.
    Kagan HB, Dang TP (1972) J Am Chem Soc 94: 6429CrossRefGoogle Scholar
  24. 22.
    Morrison JD (1985) Asymmetric Synthesis, vol 5. Academic, OrlandoGoogle Scholar
  25. 23.
    Knowles WS (1986) J Chem Educ 63: 222CrossRefGoogle Scholar
  26. 24.
    Brunner H (1988) Top Stereochem 18: 129Google Scholar
  27. 25.
    Brunner H, Becker R, Riepl G (1984) Organometallics 3: 1354CrossRefGoogle Scholar
  28. 26.
    Tani K, Yamagata T, Akutagawa S, Kumobayashi H, Taketomi T, Takaya H, Miyashita A, Noyori R, Otsuka S (1984) J Am Chem Soc 106: 5208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • H. Brunner

There are no affiliations available

Personalised recommendations