Skip to main content

Developmental Regulations of Heat-Shock Protein Synthesis in Unstressed and Stressed Cells

  • Chapter
Progress in Molecular and Subcellular Biology

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 12))

Abstract

In most cells from all organisms, heat shock and several other stress promote the synthesis of proteins which have been conserved throughout evolution, the so-called heat-shock proteins (HSPs). In Escherichia coli a dozen HSPs have been characterized and their corresponding genes cloned and sequenced; their increased expression in response to heat shock is regulated by the accumulation of the htpR gene product (Neidhardt and Van Bogelen 1987). Under normal growth conditions the cells already express significant levels of HSPs, which are for the most part coded by essential genes. Each of the following major bacterial heat-shock genes (DnaK, GroE, HtpG) has been found to have eukaryotic multigenic homologs. The 80/90 kDa eukaryotic proteins are homologs to the bacterial htpG; the 70/80 kDa proteins are related to the bacterial dnaK; the 50/60 kDa proteins are related to the bacterial groEL. However, some eukaryotic HSPs such as ubiquitin do not appear to have a bacterial counterpart. For eukaryotes, there are confusing problems of nomenclature; HSP should designate heat-inducible proteins and HSC refer to “cognate” constitutive proteins; but the distinction between HSPs and HSCs is often a matter of semantics, constitutive or stress-inducible expression can depend either on the cell type or on different genes coding for the same protein. The letters hsp or hsc are followed by the approximate molecular weight in kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcini A, Fresno M (1988) Early and late heat-induced proteins during Leishmania mexicana transformation. Biochem Biophys Res Comm 156:1360–1367.

    Article  Google Scholar 

  • Allen RL, O’Brien DA, Eddy EM (1988a) A novel hsp70-like protein (P70) is present in mouse spermatogenic cells. Mol Cell Biol 8:828–832.

    PubMed  CAS  Google Scholar 

  • Allen RL, O’Brien DA, Jones CC, Rockett DL, Eddy EM (1988b) Expression of heat shock proteins by isolated mouse spermatogenic cells. Mol Cell Biol 8:3260–3266.

    PubMed  CAS  Google Scholar 

  • Amsterdam A, Rotmensch S, Ben-Ze’ev A (1989) Coordinated regulation of morphological and biochemical differentiation in a steroidogenic cell: the granulosa cell model. Trends Biochem Sci 14:377–382.

    Article  PubMed  CAS  Google Scholar 

  • Anderson NL, Giometti CS, Gemmell MA, Nance SL, Anderson NG (1982) A two-dimensional electrophoretic analysis of the heat-shock-induced proteins of human cells. Clin Chem 28:1084–1092.

    PubMed  CAS  Google Scholar 

  • Anson JF, Hinson WG, Pipkin JL, Kwarta RF, Hansen DK, Young JF, Burns ER, Casciano DA (1987) Retinoic acid induction of stress proteins in fetal mouse limb buds. Dev Biol 121:542–547.

    Article  PubMed  CAS  Google Scholar 

  • Ardeshir F, Flint JE, Richman SJ, Reese RT (1987) A 75 kd merozoite surface protein of Plasmodium falciparum which is related to the 70 kd heat-shock proteins. EMBO J 6:493–499.

    PubMed  CAS  Google Scholar 

  • Arrigo AP (1987) Cellular localization of HSP23 during Drosophila development and following subsequent heat shock. Dev Biol 122:39–48.

    Article  PubMed  CAS  Google Scholar 

  • Arrigo AP, Pauli D (1988) Characterization of hsp27 and three immunologically related polypeptides during Drosophila development. Exp Cell Res 175:169–183.

    Article  PubMed  CAS  Google Scholar 

  • Aujame L (1986) Murine plasmacytomas constitute a class of natural heat-shock variants in which the major inducible hsp-68 gene is not expressed. Can J Genet Cytol 28:1064–1075.

    PubMed  CAS  Google Scholar 

  • Aujame L, Firko H (1988) The major inducible heat shock protein hsp68 is not required for acquisition of thermal resistance in mouse plasmacytoma cell lines. Mol Cell Biol 8:5486–5494.

    PubMed  CAS  Google Scholar 

  • Aujame L, Morgan C (1985) Nonexpression of a major heat shock gene in mouse plasmacytoma MPC-11. Mol Cell Biol 5:1780–1783.

    PubMed  CAS  Google Scholar 

  • Baez M, Sargan DR, Elbrecht A, Kulomaa MS, Zarucki-Schulz T, Tsai MJ, O’Malley BW (1987) Steroid hormone regulation of the gene encoding the chicken heat shock protein Hsp 108. J Biol Chem 262:6582–6588.

    PubMed  CAS  Google Scholar 

  • Banerji SS, Theodorakis NG, Morimoto RI (1984) Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. Mol Cell Biol 4:2437–2448.

    PubMed  CAS  Google Scholar 

  • Banerji SS, Laing K, Morimoto RI (1987) Erythroid lineage-specific expression and inducibility of the major heat shock protein HSP70 during avian embryogenesis. Genes Dev 1:946–953.

    Article  PubMed  CAS  Google Scholar 

  • Barnes FL, Robl JM, First NL (1987) Nuclear transplantation in mouse embryos: assessment of nuclear function. Biol Reproduct 36:1267–1274.

    Article  CAS  Google Scholar 

  • Barnier JV, Bensaude O, Monrange M, Babinet C (1987) Mouse 89 kD heat shock protein. Two polypeptides with distinct developmental regulation. Exp Cell Res 170:186–194.

    Article  PubMed  CAS  Google Scholar 

  • Barra J, Renard JP (1988) Diploid mouse embryos constructed at the late 2-cell stage from haploid parthenotes and androgenotes can develop to term. Development 102:773–779.

    PubMed  CAS  Google Scholar 

  • Bédard PA, Brandhorst BP (1986) Translational activation of maternal mRNA encoding the heat-shock protein hsp90 during sea urchin embryogenesis. Dev Biol 117:286–293.

    Article  PubMed  Google Scholar 

  • Bensaude O, Babinet C, Morange M, Jacob F (1983) Heat-shock proteins, first major products of zygotic gene activity in mouse embryo. Nature (Lond) 305:331–333.

    Article  CAS  Google Scholar 

  • Bensaude O, Morange M (1983) Spontaneous high expression of heat-shock proteins in mouse embryonal carcinoma cells and ectoderm from day 8 mouse embryo. EMBO J 2:173–177.

    PubMed  CAS  Google Scholar 

  • Ben-Ze’ev A, Amsterdam A (1989) Regulation of heat shock protein synthesis by gonadotropins in cultured granulosa cells. Endocrinology 124:2584–2594.

    Article  CAS  Google Scholar 

  • Berger E, Woodward MP (1983) Small heat shock proteins in Drosophila may confer thermal tolerance. Exp Cell Res 147:437–442.

    Article  PubMed  CAS  Google Scholar 

  • Bianco AE, Favalora JM, Burkot TR, Culvenor JG, Crewther PE, Brown GV, Anders RF, Coppel RL, Kemp DJ (1986) A repetitive antigen of Plasmodium falciparum that is homologous to heat shock protein 70 of Drosophila melanogaster. Proc Natl Acad Sci USA 83:8713–8717.

    Article  PubMed  CAS  Google Scholar 

  • Bienz M (1984a) Xenopus hsp70 genes are constitutively expressed in injected oocytes. EMBO J 3:2477–2483.

    PubMed  CAS  Google Scholar 

  • Bienz M (1984b) Developmental control of the heat-shock response in Xenopus. Proc Natl Acad Sci USA 81:3138–3142.

    Article  PubMed  CAS  Google Scholar 

  • Bienz M (1985) Transient and developmental activation of heat-shock genes. Trends Biochem Sci 10:157–161.

    Article  CAS  Google Scholar 

  • Bienz M (1986) A CCAAT box confers cell-type specific regulation on the Xenopus hsp70 gene in oocytes. Cell 46:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Gurdon JB (1982) The heat-shock response in Xenopus oocytes is controlled at the translational level. Cell 29:811–819.

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Pelham HRB (1987) Mechanisms of heat shock gene activation in higher eukaryotes. Adv Genet 24:31–72.

    Article  PubMed  CAS  Google Scholar 

  • Boeuf H, Jansen-Durr P, Kédinger C (1990) Ela-mediated transactivation of the adenovirus Ella early promoter is restricted in undifferentiated F9 cells. Oncogene 5:691–699.

    PubMed  CAS  Google Scholar 

  • Bolton VN, Oades PJ, Johnson MH (1984) The relationship between cleavage, DNA replication, and gene expression in the mouse 2-cell embryo. J Embryol Exp Morphol 79:139–163.

    PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1987) Heat-shock proteins and development. Adv Genet 24:1–29.

    Article  PubMed  CAS  Google Scholar 

  • Bonner JJ, Parks C, Parker-Thornburg J, Mortin MA, Pelham HRB (1984) The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell 37:979–991.

    Article  PubMed  CAS  Google Scholar 

  • Boorstein WR, Craig EA (1990) Regulation of a yeast HSP70 gene by a cAMP responsive transcriptional control element. EMBO J 9:2543–2553.

    PubMed  CAS  Google Scholar 

  • Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9:3919–3930.

    PubMed  CAS  Google Scholar 

  • Browder LW, Heikkila JJ, Wilkes J, Wang T, Pollock M, Krone P, Ovsenek M, Kloc M (1987) Decay of the oocyte-type heat-shock response of Xenopus laevis. Dev Biol 124:191–199.

    Article  PubMed  CAS  Google Scholar 

  • Brunt SA, Riehl R, Silver JC (1990) Steroid hormone regulation of the Achlya ambisexualis 85-kilodalton heat shock protein, a component of the Achlya steroid receptor complex. Mol Cell Biol 10:273–281.

    PubMed  CAS  Google Scholar 

  • Cameron S, Levin L, Zoller M, Wigler M (1988) cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53:555–566.

    Article  PubMed  CAS  Google Scholar 

  • Carr BI, Huang TH, Buzin CH, Itakura K (1986) Induction of heat shock gene expression without heat shock by hepatocarcinogens and during hepatic regeneration in rat liver. Cancer Res 46:5106–5111.

    PubMed  CAS  Google Scholar 

  • Caruso M, Sacco M, Medoff G, Maresca B (1987) Heat shock 70 gene is differentially expressed in Histoplasma capsulatum strains with different levels of thermotolerance and pathogenicity. Mol Microbiol 1:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Catelli MG, Binait N, Jung-Testas I, Renoir JM, Baulieu EE, Feramisco JR, Welch WJ (1985) The common 90-kd protein component of non-transformed ‘8S’ steroid receptors is a heat-shock protein. EMBO J 4:3131–3135.

    PubMed  CAS  Google Scholar 

  • Catelli MG, Ramachandran C, Gauthier Y, Legagneux V, Quelard C, Baulieu EE, Shyamala G (1989) Developmental regulation of murine mammary-gland 90 kDa heat-shock proteins. Biochem J 258:895–901.

    PubMed  CAS  Google Scholar 

  • Celis JE, Lauridsen JB, Basse B (1988) Cell cycle-associated change in the expression of the proliferation-sensitive and heat-shock protein hsX70 (IEF14): increased synthesis during mitosis. Exp Cell Res 177:176–185.

    Article  PubMed  CAS  Google Scholar 

  • Cheney CM, Shearn A (1983) Developmental regulation of Drosophila imaginai disc proteins: synthesis of a heat shock protein under non-heat-shock conditions. Dev Biol 95:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246:382–385.

    Article  PubMed  CAS  Google Scholar 

  • Cohen RS, Meselson M (1985) Separate regulatory elements for the heat-inducible and ovarian expression of the Drosophila hsp26 gene. Cell 43:737–746.

    Article  PubMed  CAS  Google Scholar 

  • Curci A, Bevilacqua A, Mangia F (1987) Lack of heat-shock response in preovulatory mouse oocytes. Dev Biol 123:154–160.

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, King ML (1989) The developmental expression of the heat-shock response in Xenopus laevis. Development 105:213–222.

    PubMed  CAS  Google Scholar 

  • Day AR, Lee AS (1989) Transcriptional regulation of the gene encoding the 78-kD glucose regulated protein GRP78 in mouse Sertoli cells: binding of specific factor(s) to the GRP78 promoter. DNA 301-310.

    Google Scholar 

  • Dooley TP, Miranda M, Jones NC, DePamphilis ML (1989) Transactivation of the adenovirus Ella promoter in the absence of adenovirus E1A protein is restricted to mouse oocytes and preimplantation embryos. Development 107:945–956.

    PubMed  CAS  Google Scholar 

  • Dura JM (1981) Stage dependent synthesis of heat shock induced proteins isn early embryos of Drosophila melanogaster. Mol Gen Genet 184:381–385.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin-Rastl E, Shrutkowski A, Dworkin MB (1985) Multiple ubiquitin mRNAs during Xenopus laevis development cotain tandem repeats of the 76 amino acid coding sequence. Cell 39:321–325.

    Article  Google Scholar 

  • Edgar BA, Schubiger G (1986) Parameters controlling transcriptional activation during early Drosophila development. Cell 44:871–877.

    Article  PubMed  CAS  Google Scholar 

  • Edington BV, Whelan SA, Hightower LE (1989) Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. J Cell Physiol 139:219–228.

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14:339–342.

    Article  PubMed  CAS  Google Scholar 

  • Faassen AE, O’Leary JJ, Rodysill KJ, Bergh N, Hallgren HM (1989) Diminished heat-shock protein synthesis following mitogen stimulation of lymphocytes from aged donors. Exp Cell Res 183:326–334.

    Article  PubMed  CAS  Google Scholar 

  • Fargnoli J, Kusinada T, Fornace AJ, Schneider EL, Holbrook HJ (1990) Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci USA 87:846–850.

    Article  PubMed  CAS  Google Scholar 

  • Ferris DK, Harel-Bellan A, Morimoto RI, Welch WJ, Farrar WL (1988) Mitogen and lymphokine Stimulation of heat shock proteins in T lymphocytes. Proc Natl Acad Sci USA 85:3850–3854.

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Ozkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell 48:1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Fisher GA, Anderson RL, Hahn GM (1986) Glucocorticoid-induced heat resistance in mammalian cells. J Cell Physiol 128:127–132.

    Article  PubMed  CAS  Google Scholar 

  • Flach G, Johnson MH, Braude PR, Taylor RAS, Bolton VN (1982) The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1:681–686.

    PubMed  CAS  Google Scholar 

  • Fornace AJ, Alamo I, Hollander MC (1988) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85:8800–8804.

    Article  PubMed  CAS  Google Scholar 

  • Fornace AJ, Alamo I, Hollander MC, Lamoreaux E (1989) Induction of heat shock protein transcripts and B2 transcripts by various stresses in Chinese hamster cells. Exp Cell Res 182:61–74.

    Article  PubMed  CAS  Google Scholar 

  • Fornace AJ, Mitchell JB (1986) Induction of B2 RNA polymerase III transcription by heat shock: enrichment for heat shock induced sequences in rodent cells by hybridization subtraction. Nucl Acid Res 14:5793–5811.

    Article  CAS  Google Scholar 

  • Fuqua SAW, Blum-Salingaros M, McGuire WL (1989) Induction of the estrogen-regulated “24K” protein by heat shock. Cancer Res 49:4126–4129.

    PubMed  CAS  Google Scholar 

  • Gaestel M, Gross B, Benndorf R, Strauss M, Schunk WH, Kraft R, Otto A, Böhm H, Stahl J, Drabsch H, Bielka H (1989) Molecular cloning, sequencing and expression in Escherichia coli of the 24-kDa growth-related protein of Ehrlich ascites tumor and its homology to mammalian stress proteins. Eur J Biochem 179:209–213.

    Article  PubMed  CAS  Google Scholar 

  • Giebel LB, Dworniczak BP, Bautz EKF (1988) Developmental regulation of a constitutively expressed mouse mRNA encoding a 72-kDa heat shock-like protein. Dev Biol 125:200–207.

    Article  PubMed  CAS  Google Scholar 

  • Giorda R, Ennis HL (1987) Structure of two developmentally regulated Dictyostelium discoideum ubiquitin genes. Mol Cell Biol 6:2097–2103.

    Google Scholar 

  • Glaser RL, Lis JT (1990) Multiple, compensatory regulatory elements specify spermatocyte-specific expression of the Drosophila melanogaster hsp26 gene. Mol Cell Biol 10:131–137.

    PubMed  CAS  Google Scholar 

  • Glaser RL, Wolfner MF, Lis JT (1986) Spatial and temporal pattern of hsp26 expression during normal development. EMBO J 5:747–754.

    PubMed  CAS  Google Scholar 

  • Graham RW, Jones D, Candido EPM (1989) UbiA, the major polyubiquitin locus in Caenorhabditis elegans, has unusual structural features and is constitutively expressed. Mol Cell Biol 9:268–277.

    PubMed  CAS  Google Scholar 

  • Graziosi G, Micali F, Marzari R, De Cristini F, Savoini A (1980) Variability of response of early Drosophila embryos to heat shock. J Exp Zool 214:141–145.

    Article  CAS  Google Scholar 

  • Greene JM, Larin Z, Taylor ICA, Prentice H, Gwinn KA, Kingston RE (1987) Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines. Mol Cell Biol 7:3646–3655.

    PubMed  CAS  Google Scholar 

  • Grinfeld S, Gilles J, Jacquet P, Baugnet-Mahieu L (1987) Late division kinetics in relation to modification of protein synthesis in mouse eggs blocked in the G2 phase after X-irradiation. Int J Radiat Biol 52:77–90.

    Article  CAS  Google Scholar 

  • Haas I, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature (Lond) 306:387–389.

    Article  CAS  Google Scholar 

  • Hahnel AC, Gifford DJ, Heikkila JJ, Schultz GA (1986) Expression of the major heat shock protein (hsp70) family during early mouse embryo development. Teratog Carcinog Mutagen 6:493–510.

    Article  PubMed  CAS  Google Scholar 

  • Haire RN, O’Leary JJ (1988) Mitogen-induced preferential synthesis of proteins during the Go to S phase transition in human lymphocytes. Exp Cell Res 179:65–78.

    Article  PubMed  CAS  Google Scholar 

  • Haire RN, Peterson MS, O’Leary JJ (1988) Mitogen activation induces the enhanced synthesis of two heat-shock proteins in human lymphocytes. J Cell Biol 106:883–891.

    Article  PubMed  CAS  Google Scholar 

  • Heikkila JJ, Schultz GA (1984) Different environmental stresses can activate the expression of a heat shock gene in rabbit blastocysts. Gamete Res 10:45–56.

    Article  CAS  Google Scholar 

  • Heikkila JJ, Kloc M, Bury J, Schultz GA, Browder LW (1985a) Acquisition of the heat-shock response and thermotolerance during early development of Xenopus laevis. Dev Biol 107:483–489.

    Article  PubMed  CAS  Google Scholar 

  • Hensold JO, Housman DE (1988) Decreased expression of the stress protein HSP70 is an early event in murine erythroleukemic cell differentiation. Mol Cell Biol 8:2219–2223.

    PubMed  CAS  Google Scholar 

  • Hensold JO, Hunt CR, Calderwood SK, Housman DE, Kingston RE (1990) DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol Cell Biol 10:1600–1608.

    PubMed  CAS  Google Scholar 

  • Hickey E, Brandon SE, Smale G, Lloyd D, Weber LA (1989) Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein. Mol Cell Biol 9:2615–2626.

    PubMed  CAS  Google Scholar 

  • Hoffman EP, Corces VG (1984) Correct temperature induction and developmental regulation of a cloned heat shock gene transformed into the Drosophila germ line. Mol Cell Biol 4:2883–2889.

    PubMed  CAS  Google Scholar 

  • Hoffman EP, Gerring SL, Corces VG (1987) The ovarian, ecdysterone, and heat-shock-responsive promoters of the Drosophila melanogaster hsp27 gene react very differently to perturbations of DNA sequence. Mol Cell Biol 7:973–981.

    PubMed  CAS  Google Scholar 

  • Hoffmann EP, Corces V (1986) Sequences involved in temperature and ecdysterone-induced transcription are located in separate regions of a Drosophila melanogaster heat-shock gene. Mol Cell Biol 6:663673.

    Google Scholar 

  • Hoffmann T, Hovemann B (1988) Heat-shock proteins, Hsp84 and Hsp86, of mice and men: two related genes encode formerly identified tumour-specific transplantation antigens. Gene 74:491–501.

    Article  PubMed  CAS  Google Scholar 

  • Horrell A, Shuttleworth J, Colman A (1987) Transcript levels and translational control of hsp70 synthesis in Xenopus oocytes. Genes Dev 1:433–444.

    Article  PubMed  CAS  Google Scholar 

  • Horwich AL, Neupert W, Hartl F-U (1990) Protein-catalysed protein folding. TIBTECH 8:126–131.

    CAS  Google Scholar 

  • Howlett SK, Bolton VN (1985) Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis. J Embryol Exp Morphol 87:175–206.

    PubMed  CAS  Google Scholar 

  • Howlett SK (1986) The effect of inhibiting DNA replication in the one-cell mouse embryo. Wilhelm Roux’s Arch Dev Biol 195:499–505.

    Article  CAS  Google Scholar 

  • Howlett SK, Barton SC, Surani MA (1987) Nuclear cytoplasmic interactions following nuclear transplantation in mouse embryos. Development 101:915–923.

    PubMed  CAS  Google Scholar 

  • Hunter KW, Cook CL, Hayunga EG (1984) Leishmanial differentiation in vitro: induction of heat shock proteins. Biochem Biophys Res Comm 125:755–760.

    Article  PubMed  CAS  Google Scholar 

  • Iida H, Yahara I (1984) Durable synthesis of high molecular weight heat shock proteins in Go cells of the yeast and other eucaryotes. J Cell Biol 99:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Ireland RC, Berger E, Sirotkin K, Yund MA, Osterbur D, Fristrom J (1982) Ecdysterone induces the transcription of four heat-shock genes in Drosophila S3 cells and imaginai discs. Dev Biol 93:498–507.

    Article  PubMed  CAS  Google Scholar 

  • Jansen-Durr P, Boeuf H, Kédinger C (1989) Cooperative binding of two E2F molecules to an Elaresponsive promoter is triggered by the adenovirus Ela, but not by a cellular Ela-like activity. EMBO J 8:3365–3370.

    PubMed  CAS  Google Scholar 

  • Kaczmarek L, Calabretta B, Kao HT, Heintz N, Nevins J, Baserga R (1987) Control of hsp70 RNA levels in human lymphocytes. J Cell Biol 104:183–187.

    Article  PubMed  CAS  Google Scholar 

  • Kao HT, Capasso O, Heintz N, Nevins JR (1985) Cell cycle control of the human HSP70 gene: implications for the role of a cellular E1 A-like function. Mol Cell Biol 5:628–633.

    PubMed  CAS  Google Scholar 

  • Kao HT, Nevins JR (1983) Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol Cell Biol 3:2058–2065.

    PubMed  CAS  Google Scholar 

  • Kelly SE, Cartwright IL (1989) Perturbation of chromatin architecture on ecdysterone induction of Drosophila melanogaster small heat shock protein genes. Mol Cell Biol 9:332–335.

    PubMed  CAS  Google Scholar 

  • Kim KS, Kim YK, Lee AS (1990) Expression of the glucose-regulated proteins (GRP94 and GRP78) in differentiated and undifferentiated mouse embryonic cells and the use of the GRP78 promoter as an expression system in embryonic cells. Differentiation 42:153–159.

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, He S, Kim JH (1984) Modification of thermosensitivity of HeLa cells by sodium butyrate, dibutyryl cyclic adenoside 3′:5′-monophosphate, and retinoic acid. Cancer Res 44:697–702.

    PubMed  CAS  Google Scholar 

  • King ML, Davis R (1987) Do Xenopus oocytes have a heat shock response? Dev Biol 119:532–539.

    Article  PubMed  CAS  Google Scholar 

  • Kirschner M, Newport J, Gerhart J (1985) The timing of early developmental events in Xenopus. Trends Genet 1:41–47.

    Article  Google Scholar 

  • Klemenz R, Gehring WJ (1986) Sequence requirement for expression of the Drosophila melanogaster heat shock protein hsp22 gene during heat shock and normal development. Mol Cell Biol 6:2011–2019.

    PubMed  CAS  Google Scholar 

  • Kost SL, Smith DF, Sullivan WP, Welch WJ, Toft DO (1989) Binding of heat shock proteins to the avian progesterone receptor. Mol Cell Biol 9:3829–3838.

    PubMed  CAS  Google Scholar 

  • Kothary R, Perry MD, Moran LA, Rossant J (1987) Cell-lineage-specific expression of the mouse hsp68 gene during embryogenesis. Dev Biol 121:342–348.

    Article  PubMed  CAS  Google Scholar 

  • Kothary R, Clapoff S, Darling S, Perry MD (1989) Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development 105:707–714.

    PubMed  CAS  Google Scholar 

  • Krawczyk Z, Mali P, Parvinen M (1988) Expression of a testis-specific hsp70 gene-related RNA in defined stages of rat seminiferous epithelium. J Cell Biol 107:1317–1323.

    Article  PubMed  CAS  Google Scholar 

  • Krone PH, Heikkila JJ (1988) Analysis of hsp30, hsp70 and ubiquitin gene expression in Xenopus laevis tadpoles. Development 103:59–67.

    PubMed  CAS  Google Scholar 

  • Krone PH, Heikkila JJ (1989) Expression of microinjected hsp70/CAT and hsp30/CAT chimeric genes in developing Xenopus laevis embryos. Development 106:271–281.

    PubMed  CAS  Google Scholar 

  • Kurtz S, Rossi J, Petko L, Lindquist S (1986) An ancient developmental induction in Saccharomyces sporulation and Drosophila oogenesis. Science 231:1154–1157.

    Article  PubMed  CAS  Google Scholar 

  • La Thangue NB, Rigby PWJ (1987) An adenovirus El A-like transcription factor is regulated during the differentiation of murine embryonal carcinoma stem cells. Cell 49:507–513.

    Article  PubMed  Google Scholar 

  • La Thangue NB, Thimmapaya B, Rigby PWJ (1990) The embryonal carcinoma stem cell Ela-like activity involves a differentiation-regulated transcription factor. Nucl Acids Res 18:2929–2938.

    Article  PubMed  Google Scholar 

  • Lai BT, Chin NW, Stanek AE, Keh W, Lanks KW (1984) Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies. Mol Cell Biol 4:2802–2810.

    PubMed  CAS  Google Scholar 

  • Lambowitz AM, Kobayashi GS, Painter A, Medoff G (1983) Possible relationship of morphogenesis in pathogenic fungus, Histoplasma capsulatum, to heat shock response. Nature (Lond) 303:806–808.

    Article  CAS  Google Scholar 

  • Landry J, Chrétien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence F, Robert-Gero M (1985) Induction of heat shock and stress proteins in promastigotes of three Leishmania species. Proc Natl Acad Sci USA 82:4414–4417.

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Simon JA, Lis JT (1988) Structure and expression of ubiquitin genes of Drosophila melanogaster. Mol Cell Biol 8:4727–4735.

    PubMed  CAS  Google Scholar 

  • Lee SJ (1990) Expression of HSP86 in male germ cells. Mol Cell Biol 10:3239–3242.

    PubMed  CAS  Google Scholar 

  • Legagneux V, Mezger V, Quélard C, Barnier JV, Bensaude O, Morange M (1989) High constitutive transcription of HSP86 gene in murine embryonal carcinoma cells. Differentiation 41:42–48.

    Article  PubMed  CAS  Google Scholar 

  • Levine RA, LaRosa GJ, Gudas LJ (1984) Isolation of cDNA clones for genes exhibiting reduced expression after differentiation of murine teratocarcinoma stem cells. Mol Cell Biol 4:2142–2150.

    PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 55:1151–1191.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677.

    Article  PubMed  CAS  Google Scholar 

  • Liu AYC, Bae-lee MS, Choi HS, Li B (1989a) Heat shock induction of HSP 89 is regulated in cellular aging. Biochem Biophys Res Comm 162:1302–1310.

    Article  PubMed  CAS  Google Scholar 

  • Liu AYC, Lin Z, Choi HS, Sorhage F, Li B (1989b) Attenuated induction of heat shock gene expression in aging diploid fibroblasts. J Biol Chem 264:12037–12045.

    PubMed  CAS  Google Scholar 

  • Lowenhaupt K, Cartwright IL, Keene MA, Zimmerman JL, Elgin SCR (1983) Chromatin structure in pre-and postblastula embryos of Drosophila. Dev Biol 99:194–201.

    Article  PubMed  CAS  Google Scholar 

  • Maniak M, Nellen W (1988) A developmentally regulated membrane protein gene in Dictyostelium discoideum is also induced by heat shock and cold shock. Mol Cell Biol 8:153–159.

    PubMed  CAS  Google Scholar 

  • Maresca B, Kobayashi GS (1989) Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev 53:186–209.

    PubMed  CAS  Google Scholar 

  • Mason PJ, Hall LMC, Causz J (1984) The expression of heat-shock genes during normal development in Drosophila melanogaster. Mol Gen Genet 194:73–78.

    Article  CAS  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1983) Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell 32:417–423.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Fujimoto H (1990) Cloning of hsp70-related gene expressed in mouse spermatids. Biochem Biophys Res Comm 166:43–49.

    Article  PubMed  CAS  Google Scholar 

  • Mestril R, Schiller P, Amin J, Klapper H, Ananthan J, Voellmy R (1986) Heat shock and ecdysterone activation of the Drosophila melanogaster hsp23 gene; a sequence element implied by developmental regulation. EMBO J 5:1667–1673.

    PubMed  CAS  Google Scholar 

  • Mezger V, Bensaude O, Morange M (1987) Deficient activation of heat shock gene transcription in embryonal carcinoma cells. Dev Biol 124:544–550.

    Article  PubMed  CAS  Google Scholar 

  • Mezger V, Bensaude O, Morange M (1989) Unusual levels of HSE-binding activity in embryonal carcinoma cells. Mol Cell Biol 9:3888–3896.

    PubMed  CAS  Google Scholar 

  • Mezquita J, Oliva R, Mezquita C (1987) New ubiquitin mRNA expressed during chicken spermiogenesis. Nucl Acids Res 15:9604.

    Article  PubMed  CAS  Google Scholar 

  • Milarski K, Welch WJ, Morimoto RI (1989) Cell cycle-dependent association of HSP70 with specific cellular proteins. J Cell Biol 108:413–423.

    Article  PubMed  CAS  Google Scholar 

  • Milarski KL, Morimoto RI (1986) Expression of human hsp70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci USA 83:9517–9521.

    Article  PubMed  CAS  Google Scholar 

  • Morange M, Diu A, Bensaude O, Babinet C (1984) Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells. Mol Cell Biol 4:730–735.

    PubMed  CAS  Google Scholar 

  • Morgan WD (1989) Transcription factor Sp1 binds to and activates a human hsp70 gene promoter. Mol Cell Biol 9:4099–4104.

    PubMed  CAS  Google Scholar 

  • Morgan WD, Williams GT, Morimoto RI, Greene J, Kingston RE, Tjian R (1987) Two transcriptional activators, CCAAT-binding transcription factor and heat shock transcription factor, interact with a human hsp70 gene promoter. Mol Cell Biol 7:1129–1138.

    PubMed  CAS  Google Scholar 

  • Morganelli CM, Berger EM, Pelham HRB (1985) Transcription of Drosophila small hsp-tk hybrid genes is induced by heat shock and by ecdysterone in transfected Drosophila cells. Proc Natl Acad Sci USA 82:5865–5869.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R, Fodor E (1984) Cell-specific expression of heat shock proteins in chicken reticulocytes and lymphocytes. J Cell Biol 99:1316–1323.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto RI, Tissieres A, Georgopoulos C (1990) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Muller WU, Li GC, Goldstein LS (1985) Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stages of mouse embryo development. Int J Hyperthermia 1:97–102.

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Pelham HRB (1986) An hsp70-like protein in the ER: identity with the 78 kd glucoseregulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300.

    Article  PubMed  CAS  Google Scholar 

  • Nakaki T, Deans RJ, Lee AS (1989) Enhanced transcription of the 78,000-Dalton glucose regulated protein (GRP78) gene and association of GRP78 with immunoglobulin light chain in a nonsecreting B-cell myeloma line (NS-1). Mol Cell Biol 9:2233–2238.

    PubMed  CAS  Google Scholar 

  • Neidhardt FC, VanBogelen RA (1987) Heat shock response. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, vol 2. American Society for Microbiology, Washington, DC, pp 1334–1345.

    Google Scholar 

  • Nene V, Dunne DW, Johnson KW, Taylor DW, Cordingley JS (1986) Sequence and expression of a major egg antigen from Schistosoma mansoni. Homologies to heat shock proteins and alphacrystallins. J Biol Chem 21:179–188.

    CAS  Google Scholar 

  • Neupert W, Haiti FU, Craig EA, Pfannert N (1990) How do polypeptides cross the mitochondrial membranes? Cell 63:447–450.

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1982) Induction of the synthesis of a mammalian 70 kd heat shock protein by the adenovirus Ela gene product. Cell 29:913–919.

    Article  PubMed  CAS  Google Scholar 

  • Nickells RW, Browder LW (1985) Region-specific heat-shock protein synthesis correlates with a biphasic acquisition of thermotolerance in Xenopus laevis embryos. Dev Biol 112:391–395.

    Article  CAS  Google Scholar 

  • Nickells RW, Browder LW (1988) A role for glyceraldehyde-3-phosphate dehydrogenase in the development of thermotolerance in Xenopus laevis embryos. J Cell Biol 107:1901–1909.

    Article  PubMed  CAS  Google Scholar 

  • Onclercq R, Gilardi P, Lavenu A, Cremisi C (1988) c-myc products trans-activate the adenovirus E4 promoter in EC stem cells by using the same target sequence as E1A products. J Virol 62:4533–4537.

    PubMed  CAS  Google Scholar 

  • Ovsenek N, Heikkila JJ (1990) DNA sequence-specific binding activity of the heat-shock transcription factor is heat-inducible before the midblastula transition of early Xenopus development. Development 110:427–433.

    PubMed  CAS  Google Scholar 

  • Palter KB, Watanabe M, Stinson L, Mahowald AP, Craig EA (1986) Expression and localization of Drosophila melanogaster hsp70 cognate proteins. Mol Cell Biol 6:1187–1203.

    PubMed  CAS  Google Scholar 

  • Parsell DA, Sauer RT (1989) Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev 3:1226–1232.

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961.

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1989) Heat shock and sorting of luminal ER proteins. EMBO J 8:3171–3176.

    PubMed  CAS  Google Scholar 

  • Petko L, Linquist S (1986) Hsp26 is not required for growth at high temperature, nor for thermotolerance, spore development, or germination. Cell 45:885–894.

    Article  PubMed  CAS  Google Scholar 

  • Poueymirou WT, Schultz RM (1989) Regulation of mouse preimplantation development: inhibition of synthesis of proteins in the two-cell embryo that require transcription by inhibitors of cAMP-dependent protein kinase. Dev Biol 133:588–599.

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Rooney R, Nevins JR (1987) Identification of an E1A-inducible cellular factor that interacts with regulatory sequences within the adenovirus E4 promoter. EMBO J 6:4073–4081.

    PubMed  CAS  Google Scholar 

  • Rebbe NF, Hickman WS, Ley TJ, Stafford DW, Hickman S (1989) Nucleotide sequence and regulation of a human 90-kDa heat shock protein gene. J Biol Chem 264:15006–15011.

    PubMed  CAS  Google Scholar 

  • Reichel R, Kovesdi I, Nevins JR (1987) Developmental control of a promoter-specific factor that is also regulated by the E1 A gene product. Cell 48:501–506.

    Article  PubMed  CAS  Google Scholar 

  • Richards FM, Watson A, Hickman JA (1988) Investigation of the effects of heat shock and agents which induce a heat shock response on the induction of differentiation of HL-60 cells. Cancer Res 48:6715–6720.

    PubMed  CAS  Google Scholar 

  • Riddihough G, Pelham HRB (1986) Activation of the Drosophila hsp27 promoter by heat shock and by ecdysterone involves independent and remote regulatory sequences. EMBO J 5:1653–1658.

    PubMed  CAS  Google Scholar 

  • Rimland J, Akhayat O, Infante D, Infante AA (1988) Developmental regulation and biochemical analysis of a 21 Kd heat shock in sea urchins. J Cell Biochem Suppl 12D:271.

    Google Scholar 

  • Roccheri MC, Di Bernardo MG, Giudice G (1981) Synthesis of heat-shock proteins in developing sea urchins. Dev Biol 83:173–177.

    Article  PubMed  CAS  Google Scholar 

  • Rosen E, Sivertsen A, Firtel RA (1983) An unusual transposon encoding heat shock inducible and developmentally regulated transcripts in dictyostelium. Cell 35:243–251.

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59:591–601.

    Article  PubMed  CAS  Google Scholar 

  • Ruder FJ, Frasch M, Mettenleiter TC, Büsen W (1987) Appearance of two maternally directed histone H2A variants precedes zygotic ubiquitination of H2A in early embryogenesis of Sciara coprophila (Diptera). Dev Biol 122:568–576.

    Article  CAS  Google Scholar 

  • Santoro MG, Garaci E, Amici C (1989) Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells. Proc Natl Acad Sci USA 86:8407–8411.

    Article  PubMed  CAS  Google Scholar 

  • Savoini A, Micali F, Marzari R, De Cristini F, Graziosi G (1981) Low variability of the protein species synthesized by Drosophila melanogaster embryos. Wilhelm Roux’s Arch Dev Biol 190:161–167.

    Article  CAS  Google Scholar 

  • Shapira M, McEwen JG, Jaffe CL (1988) Temperature effects on molecular processes which lead to stage differentiation in Leishmania. EMBO J 7:2895–2901.

    PubMed  CAS  Google Scholar 

  • Shin DY, Matsumoto K, Iida H, Uno I, Ishikawa T (1987) Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol 7:244–250.

    PubMed  CAS  Google Scholar 

  • Shyamala G, Gauthier Y, Moore SK, Catelli MG, Ullrich SJ (1989) Estrogenic regulation of murine uterine 90-kilodalton heat shock protein gene expression. Mol Cell Biol 9:3567–3570.

    PubMed  CAS  Google Scholar 

  • Simon MC, Fisch TM, Benecke BJ, Nevins JR, Heintz N (1988) Definition of multiple, functionally distinct TATA elements, one of which is a target in the hsp70 promoter for E1A regulation. Cell 52:723–729.

    Article  PubMed  CAS  Google Scholar 

  • Simon MC, Kitchener K, Kao HT, Hickey E, Weber L, Voellmy R, Heintz N, Nevins JR (1987) Selective induction of human heat shock transcription by the adenovirus E1A gene products, including the 12S E1A product. Mol Cell Biol 7:2884–2890.

    PubMed  CAS  Google Scholar 

  • Singh MK, Yu J (1984) Accumulation of a heat shock-like protein during differentiation of human erythroid cell line K562. Nature (Lond) 309:631–633.

    Article  CAS  Google Scholar 

  • Sirotkin K, Davidson N (1982) Developmentally regulated transcription from Drosophila melanogaster chromosomal site 67B. Dev Biol 89:196–210.

    Article  PubMed  CAS  Google Scholar 

  • Suemori H, Hashimoto S, Nakatsuji N (1988) Presence of the adenovirus E1A-like activity in preimplantation stage mouse embryos. Mol Cell Biol 8:3553–3555.

    PubMed  CAS  Google Scholar 

  • Susek RE, Lindquist SL (1989) hsp26 of Saccharomyces cerevisiae is related to the superfamily of small heat shock proteins but is without a demonstrable function. Mol Cell Biol 9:5265–5271.

    PubMed  CAS  Google Scholar 

  • Taylor ICA, Kingston Re (1990) Factor substitution in a human hsp70 gene promoter: TATA-dependent and TATA-independent interactions. Mol Cell Biol 10:165–175.

    PubMed  CAS  Google Scholar 

  • Taylor KD, Piko L (1987) Patterns of mRNA prevalence and expression of B1 and B2 transcripts in early mouse embryos. Development 101:877–892.

    PubMed  CAS  Google Scholar 

  • Theodorakis NG, Zand DJ, Kotzbauer PT, Williams GT, Morimoto RI (1989) Hemin-induced transcriptional activation of the HSP70 gene during erythroid maturation in k562 cells is due to a heat shock factor-mediated stress response. Mol Cell Biol 9:3166–3173.

    PubMed  CAS  Google Scholar 

  • Ting LP, Tu CL, Chou CK (1989) Insulin-induced expression of human heat-shock protein gene hsp70. J Biol Chem 264:3404–3408.

    PubMed  CAS  Google Scholar 

  • Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E (1986) A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci USA 83:3121–3125.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich SJ, Moore SK, Appella E (1989) Transcriptional and translational analysis of the murine 84-and 86-kDa heat shock proteins. J Biol Chem 264:6810–6816.

    PubMed  CAS  Google Scholar 

  • Van der Ploeg LHT, Giannini SH, Cantor CR (1985) Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science 228:1443–1446.

    Article  PubMed  Google Scholar 

  • Vasseur M, Condamine H, Duprey P (1985) RNAs containing B2 repeated sequences are transcribed in the early stages of mouse embryogenesis. EMBO J 7:1749–1753.

    Google Scholar 

  • Vitek MP, Berger EM (1984) Steroid and high-temperature induction of the small heat-shock protein gene in Drosophila. J Mol Biol 178:173–189.

    Article  PubMed  CAS  Google Scholar 

  • Voellmy R, Rungger D (1982) Transcription of a Drosophila heat shock gene is heat-induced in Xenopus oocytes. Proc Natl Acad Sci USA 79:1776–1780.

    Article  PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Becker J, Kosic-Smithers J, Craig EA (1989) Yeast Hsp70 RNA Levels vary in response to the physiological status of the cell. J Bact 171:2680–2688.

    PubMed  CAS  Google Scholar 

  • White RJ, Stott D, Rigby PWJ (1989) Regulation of RNA polymerase HI transcription in response to F9 embryonal carcinoma stem cell differentiation. Cell 59:1081–1092.

    Article  PubMed  CAS  Google Scholar 

  • Williams GT, McClanahan TK, Morimoto RI (1989) Ela transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol Cell Biol 9:2574–2587.

    PubMed  CAS  Google Scholar 

  • Wittig S, Hensse S, Keitel C, Eisner C, Wittig B (1983) Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development. Dev Biol 96:507–514.

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Hunt C, Morimoto R (1985a) Structure and expression of the human gene encoding major heat shock protein HSP70. Mol Cell Biol 5:330–341.

    PubMed  CAS  Google Scholar 

  • Wu BJ, Morimoto RI (1985b) Transcription of the human hsp70 gene is induced by serum stimulation. Proc Natl Acad Sci USA 82:6070–6074.

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Hurst HC, Jones NC, Morimoto RI (1986a) The E1A 13S product of adenovirus-5 activates transcription of the cellular human hsp70 gene. Mol Cell Biol 6:2994–2999.

    PubMed  CAS  Google Scholar 

  • Wu BJ, Kingston RE, Morimoto RI (1986b) Human hsp70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci USA 83:629–633.

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Williams GT, Morimoto RI (1987) Detection of three protein binding sites in the serum regulated promoter of the human gene encoding the 70 kDa heat shock protein. Proc Natl Acad Sci USA 84:2203–2207.

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Lis JT (1989) Heat shock and developmental regulation of the Drosophila melanogaster hsp83 gene. Mol Cell Biol 9:1746–1753.

    PubMed  CAS  Google Scholar 

  • Young RA (1990) Stress proteins and immunology. Annu Rev Immunol 8:401–420.

    Article  PubMed  CAS  Google Scholar 

  • Yufu Y, Nishimura J, Ideguchi H, Nawata H (1990) Enhanced synthesis of heat-shock proteins and augmented thermotolerance after induction of differentiation in HL-60 human leukemia cells. FEBS Lett 268:173–176.

    Article  PubMed  CAS  Google Scholar 

  • Yufu Y, Nishimura J, Takahira H, Ideguchi H, Nawata H (1989) Down-regulation of a Mr 90,000 heat shock cognate protein during granulocytic differentiation in HL-60 human leukemia cells. Cancer Res 49:2405–2408.

    PubMed  CAS  Google Scholar 

  • Zakeri ZF, Wolgemuth DJ (1987) Developmental-stage-specific expression of the hsp70 gene family during differentiation of the mammalian germ line. Mol Cell Biol 7:1791–1796.

    PubMed  CAS  Google Scholar 

  • Zakeri ZF, Ponzetto C, Wolgemuth DJ (1988a) Translational regulation of the novel haploid-specific transcripts for the c-abl proto-oncogene and a member of the 70 kDa heat-shock protein gene family in the male germ line. Dev Biol 125:417–422.

    Article  PubMed  CAS  Google Scholar 

  • Zakeri ZF, Wolgemuth DJ, Hunt CR (1988b) Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol 8:2925–2932.

    PubMed  CAS  Google Scholar 

  • Zimarino V, Tsai C, Wu C (1990) Complex modes of heat shock factor activation. Mol Cell Biol 10:752–759.

    PubMed  CAS  Google Scholar 

  • Zimmerman JL, Petri W, Meselson M (1983) Accumulation of a specific subset of D. melanogaster heat-shock mRNAs in normal development without heat shock. Cell 32:1161–1170.

    Article  PubMed  CAS  Google Scholar 

  • Zuker C, Cappello J, Lodish HF, George P, Chung S (1984) Dictyostelium transposable element DIRS-1 has 350-base-pair inverted terminal repeats that contain a heat shock promoter. Proc Natl Acad Sci USA 81:2660–2664.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bensaude, O., Mezger, V., Morange, M. (1991). Developmental Regulations of Heat-Shock Protein Synthesis in Unstressed and Stressed Cells. In: Jeanteur, P., Kuchino, Y., Müller, W.E.G., Paine, P.L. (eds) Progress in Molecular and Subcellular Biology. Progress in Molecular and Subcellular Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76553-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76553-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76555-1

  • Online ISBN: 978-3-642-76553-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics