Viscous, 2-D, Laminar Hypersonic Flows Over Compression Ramps

  • Zuheyr Alsalihi
  • Herman Deconinck
Conference paper


Steady, laminar hypersonic viscous flows over semi-infinite flat plates and two- dimensional compression ramps are calculated. Surface pressure, skin friction and heat transfer distributions as well as flow structure plots (isoline contours) are presented for Mach numbers of 5, 10 and 14.1 and for unit Reynolds numbers of 3 to 6 million per meter.


Mach Number Skin Friction Skin Friction Coefficient Hypersonic Flow Stanton Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hung, C.M. and MacCormack, R.W. (1976). Numerical Solutions of Supersonic and Hypersonic Laminar Flows Over a Two-Dimensional Compression Corner, AIAA Journal, Vol. 14, April 1976.Google Scholar
  2. 2.
    Stokesberry, D.C., and Tannehill, J.C. (1986). Computation of Separated Flow on a Ramp Using the Space Marching Conservative Supra- Characteristic Method, AIAA Paper 86–0564, Jan. 1986.Google Scholar
  3. 3.
    Lawrence, S.L.,Tannehill, J.C., Chaussee, D.S. (1986). An Upwind Algorithm for the Parabolized Navier-Stokes Equations, AIAA Paper 66– 1117, May 1986.Google Scholar
  4. 4.
    Haase, W. (1990). Viscous Hypersonic Flows over Compression Ramps, Proceedings, 8th GAMM Conf. on Numerical Methods in Fluid Mechanics, ed. P. Wesseling,1990.Google Scholar
  5. 5.
    Simeonides, G., and Wend, J.F. (1990). Compression Corner Shock Wave Boundary Layer Interactions at Mach 14, Preprint 1990–25/AR17th Congress Int. Council of the Aeronautical Sciences (ICAS), Stockholm, Sweden, Sept, 1990.Google Scholar
  6. 6.
    Peyret, R., and Viviand, H. (1975). Computation of Viscous Compressible Flows Based on the Navier-Stokes Equations, AGARD-AG- 212, 1975.Google Scholar
  7. 7.
    Pulliam, T.H. (1986). Solution Methods in Computational Fluid Dynamics, Von Karman Institute LS-1986-02, January 1986.Google Scholar
  8. 8.
    Yee, H.C. (1989). A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods, Von Karman Institute LS-1989-04, 1989.Google Scholar
  9. 9.
    Anderson, D.A., Tannehill, J.C., Pletcher, R.H. (1984). Computational Fluid Mechanics and Heat Transfer, Mc Graw-Hill, New York.MATHGoogle Scholar
  10. 10.
    Yee, H.C. (1986). Linearized Form of Implicit TVD Schemes for the Multidimensional Euler and Navier-Stokes Equations, Computers and Mathematics with Applications, Vol. 12A, No. 4 /5, 1986.Google Scholar
  11. 11.
    Alsalihi, Z. (1989). Solution of Compressible, Turbulent Low Reynolds Number Airfoil Flows with Separation, Proceedings of the Int. Conf. on Low Reynolds Number Airfoil Aerodynamics, Univ. of Notre Dame, Indiana, June 1989.Google Scholar
  12. 12.
    Pulliam, T.H. and Steger, J. (1985). Recent Improvements in Efficiency, Accuracy and Convergence for Implicit Approximate Factorization Algorithms, AIAA Paper No. 85–0360, 1985.Google Scholar
  13. 13.
    Muller, B. (1985). Navier-Solutions for Hypersonic Flow over an Indented Nosetip, AIAA Paper 85–1504, 1985.ADSGoogle Scholar
  14. 14.
    Beam, R., and Warming, R.F. (1978). An Implicit Factored Scheme for the Compressible Navier-Stokes Equations, AIAA Journal, Vol. 16, April 1978.Google Scholar
  15. 15.
    Roe, P.L. (1981). Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, Journal of Computational Physics, Vol. 43, 1981.Google Scholar
  16. 16.
    Jameson, A., Schmidt, W., Türkei, E., (1981). Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time- Stepping Schemes, AIAA Paper 81–1259, Palo Alto, 1981.Google Scholar
  17. 17.
    Martinelli, L. (1987). Calculations of Viscous Flows with a Multigrid Method, Ph.D. Thesis, Princeton University, MAE Dept., 1987.Google Scholar
  18. 18.
    Türkei, E. (1988). Improving the Accuracy of Central Difference Sch ernes, ICASE Report No. 88–53 September 1988.Google Scholar
  19. 19.
    Radespiel, R. (1989). A Cell-Vertex Multigrid Method for the Navier- Stokes Equations, NASA TM-101557, January 1989.Google Scholar
  20. 20.
    Muller, B. (1989). Simple Improvements of an Upwind TVD Scheme, for Hypersonic Flow, AIAA Paper 89-1977-CP, 1989.Google Scholar
  21. 21.
    Alsalihi, Z. (1987). Two-Dimensional Hyperbolic Grid Generation, VKI-TN-162, October 1987.Google Scholar
  22. 22.
    Rudy, D. H. et. al. (1989). A Validation Study of Four Navier-Stokes Codes for High-Speed Flows, AIAA Paper 89–1838, Bufallo, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Zuheyr Alsalihi
    • 1
  • Herman Deconinck
    • 1
  1. 1.Von Karman Institute for Fluid MechanicsRhode-St-GeneseBelgium

Personalised recommendations