Advertisement

The Molecular Mechanism of Retinal Degeneration in the Retinal Degeneration B (rdgB) Mutant of Drosophila

  • B. Minke
  • C. T. Rubinstein
  • I. Sahly
  • S. Bar-Nachum
  • E. Suss
  • J. Kleiman
  • T. Byk
  • Z. Selinger
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)

Abstract

The rdgB Drosophila is a retinal degeneration mutant that reveals its characteristic phenotype when the fly is exposed to light. It was therefore inferred that some intermediate step along the phototransduction pathway is inactivated by the normal rdgB gene product and when the latter is defective, an unbalanced action of this intermediate brings about retinal degeneration. Recent studies have indicated that in invertebrate photoreceptors, the inositol lipid signaling system mediates phototransduction. To localize the stage in the phototransduction cascade with which the rdgB gene product interacts, we applied to the rdgB eyes chemicals that can activate specific photoreceptor proteins in the dark. Application of F, GTPγS and phorbol ester to eyes of rdgB flies led to a degeneration of the photoreceptors that was indistinguishable from that caused by light. Application of the above reagents to the eyes of wild type flies had no effect. We suggest that light or the above chemical reagents activate protein kinase C, via G-protein -activated phospholipase C, resulting in an excessive phosphorylation of proteins in rdgB eyes relative to wild type flies. This suggestion was supported by pulse labeling with 32P-phosphate which showed a much greater incorporation of 32P-labeled proteins in rdgB relative to wild type eyes. The abnormal appearance of regenerative Ca2+ spikes in the terminals of the degenerating rdgB photoreceptors suggests that imbalanced regulation of voltage- and phosphorylation-dependent Ca2+ channels by protein kinase and deficient phosphatase activities result in a toxic increase in intracellular Ca2+ that leads to degeneration. This suggested mechanism was supported by the inhibition of the light-induced retinal degeneration following application of diltiazem, a Ca2+ channel blocker, to rdgB flies raised in the light.

Keywords

Phorbol Ester Photoreceptor Cell Retinal Degeneration Fast Time Scale Photoreceptor Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, G.A., Farber, D., Lolley, R., Fletcher, R.T. and Chader, G.J. (1978) Science 201, 1133–1134.CrossRefGoogle Scholar
  2. Armstrong, D. and Eckert, R. (1987) Proc. Natl. Acad. Sci. 84, 2518–2522.CrossRefGoogle Scholar
  3. Benzer, S. (1967) Proc. Natl. Acad. Sci. 58, 1112–1119.CrossRefGoogle Scholar
  4. Bloomquist, B.T., Shortridge, R.D., Schneuwly, S., Pedrew, M., Montell, C., Steller, H., Rubin, G. and Pak, W.L. (1989) Cell 54, 723–733.CrossRefGoogle Scholar
  5. Blumenfeld, A., Erusalimsky, J., Heichal, 0., Selinger, Z. and Minke, B. (1985) Proc. Natl. Acad. Sci. 82, 7116–7120.Google Scholar
  6. Chad, J.E. and Eckert, R. (1986) J. Physiol. 378, 31–51.PubMedGoogle Scholar
  7. Choi, D.W. (1988) Trends Neurosci. 11, 465–469.PubMedCrossRefGoogle Scholar
  8. Devary, 0., Heichal, 0., Blumenfeld, A., Cassel, D., Suss, E., Barash, S., Rubinstein, C.T., Minke, B. and Selinger, Z. (1987) Proc. Natl. Acad. Sci. 84, 6939–6943.Google Scholar
  9. Eckstein, F., Cassel, D., Levkovitz, H., Lowe, M. and Selinger, Z. (1979) J. Biol. Chem. 254, 9829–9834.PubMedGoogle Scholar
  10. Farber, D. and Lolley, R. (1974) Science 186, 449–451.PubMedCrossRefGoogle Scholar
  11. Farber, D.B., Flannery, J.G., Bird, A.C., Shuster, T. and Bok, D. (1987) In: Degenerative Retinal Disorders: Clinical and Laboratory Investigations, pp. 53–67. Alan R. Liss, Inc.Google Scholar
  12. Fein, A. (1986) Science 232, 1543–1545.PubMedCrossRefGoogle Scholar
  13. Harris, W.A. and Stark, W.S. (1977) J. Gen. Physiol. 69, 261–291.PubMedCrossRefGoogle Scholar
  14. Harris, W.A., Stark, W.S. and Walker, J.A. (1976) J. Physiol. (Lond.) 256, 415–439.Google Scholar
  15. Hotta, Y. and Benzer, S. (1970) Proc. Natl. Acad. Sci. 67, 1156–1163.CrossRefGoogle Scholar
  16. Minke, B. (1986) In: The Molecular Mechanism of Photoreception, ed. H. Stieve, pp. 241–256. Dahlem Konferenzen Berlin: Springer-Verlag.Google Scholar
  17. Minke, B. and Stephenson, R.S. (1985) J. Comp. Physiol. 156, 339–356.CrossRefGoogle Scholar
  18. Minke, B., Rubinstein, C.T., Shaly, I., Bar-Nachum, S., Timberg, R. and Selinger, Z. (1990) Proc. Natl. Acad. Sci. 87, 113–117.CrossRefGoogle Scholar
  19. Nishizuka, Y. (1988) Nature 334, 661–665.PubMedCrossRefGoogle Scholar
  20. Pak, W.L. (1979) In: Neurogenetics: Genetic Approaches to the Nervous System, ed. X. Breakefield, pp., New York: Elsevier North-Holland.Google Scholar
  21. Paulsen, R., Bentrop, J., Baurenschmitt, H.T., Bockerg, D. and Peters, K. (1987) Photobiochem. Photobiophys. ( Suppl. ) 261–272.Google Scholar
  22. Payne, R. (1986) Photobiochem. Photobiophys. 13, 373–397.Google Scholar
  23. Payne, R., Walz, B., Levy, S. and Fein, A. (1988) Phil. Trans. Roy. Soc. Lond. B. Biol. Sci. 320, 359–379.CrossRefGoogle Scholar
  24. Pumplin, D.W., Reese, T.S. and Llinas, R. (1981) Proc. Natl. Acad. Sci. 78, 7210–7213.CrossRefGoogle Scholar
  25. Rothman, S. (1984) J. Neurosci. 4, 1884–1891.PubMedGoogle Scholar
  26. Rubinstein, C.T., Bar-Nachum, S., Selinger, Z. and Minke, B. (1989a) Vis. Neurosci. 2, 529–539.PubMedCrossRefGoogle Scholar
  27. Rubinstein, C.T., Bar-Nachum, S., Selinger, Z. and Minke, B. (1989b) Vis. Neurosci. 2, 541–551.PubMedCrossRefGoogle Scholar
  28. Schaeffer, E., Smith, D., Mardon, G., Quinn, W. and Zuker, C. (1989) Cell 57, 403–412.PubMedCrossRefGoogle Scholar
  29. Schanne, F.A.X., Kane, A.B., Young, E.E. and Farber, J.L. (1979) Science 206, 700–702.PubMedCrossRefGoogle Scholar
  30. Selinger, Z. and Minke, B. (1988) Cold Spring Harbor Symposia on Quantitative Biology LIII, 333–341.Google Scholar
  31. Stark, W.S. and Carlson, S.D. (1982) Cell Tiss. Res. 225, 11–22.CrossRefGoogle Scholar
  32. Stark, W.S. and Sapp, R. (1989) In: Inherited and Environmentally Induced Retinal Degenerations, pp. 467–489. Alan R. Liss, Inc.Google Scholar
  33. Suss, E., Barash, S., Stavenga, D.G., Steive, H., Selinger, Z. and Minke, B. (1989) J. Gen. Physiol. 94, 465–491.PubMedCrossRefGoogle Scholar
  34. Tsuda, M. (1987) Photochem. Photobiol. 45, 915–931.CrossRefGoogle Scholar
  35. Wilcox, M. and Franceschini, N. (1984a) Science 225, 851–854.PubMedCrossRefGoogle Scholar
  36. Wilcox, M. and Franceschini, N. (1984b) Neurosci. Letts. 50, 187–192.CrossRefGoogle Scholar
  37. Yau, K.-W. and Nakatani, K. (1985) Nature 313, 579–582.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • B. Minke
    • 1
  • C. T. Rubinstein
    • 1
  • I. Sahly
    • 1
  • S. Bar-Nachum
    • 1
  • E. Suss
    • 1
  • J. Kleiman
    • 2
  • T. Byk
    • 2
  • Z. Selinger
    • 2
  1. 1.Department of Physiology and the Minerva Center for Studies of Visual TransductionThe Hebrew UniversityJerusalemIsrael
  2. 2.Department of Biological Chemistry and the Minerva Center for Studies of Visual TransductionThe Hebrew UniversityJerusalemIsrael

Personalised recommendations