The Eyes of Halobacteria

  • D. Oesterhelt
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


Considerable progress has been made in recent years in the understanding of the function of molecular components in eucaryotic and eubacterial signal transduction chains. Among the well known examples are processes dependent on G-proteins in eucaryotes and processes dependent on receptors, called methyl-accepting proteins, in eubacteria. In contrast, almost nothing is known about signal transduction in archaebacteria, which constitute the third branch of the living world. The light-regulated swimming behaviour of Halobacterium halobium as the only example of an archaebacterial signal chain that is currently studied at the cellular and molecular level and its biochemistry therefore deserves general interest for its relationship to eubacterial and eucaryotic signalling systems. Despite of evolutionary diversions the halobacterial signal chain includes the same basic principles which are known for other sensory systems. These are reception of the stimulus, amplification of the signal input, integration of signals caused by different types of sensory stimuli and adaptation to the stimulus background.


Transmembrane Helix Fumaric Acid Visual Pigment Signal Chain Stimulus Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    D. Oesterhelt and W. Marwan (1989). In: Receptors, Membrane Transport and Signal Transduction (A.E. Evangelopoulos et al.f eds.) NATO ASI Series, vol. H29, Springer-Verlag Berl in Heidelberg.Google Scholar
  2. 2).
    D. Oesterhelt and J. Tittor (1989). Trends Biochem. Sc. 14., 57.Google Scholar
  3. 3).
    J.K. Lanyi (19 86). Ann. Rev. Biophys. Biophys. Chem. 15. 11.Google Scholar
  4. 4).
    J. L. Spudich and R.A. Bogomolni (1988). Ann. Rev. Biophys. Biophys. Chem. 17, 193.Google Scholar
  5. 5).
    L. Gerl and M. Sumper (1988). J. Biol. Chem. 263, 13246.Google Scholar
  6. 6).
    M. Alam, M. Lebert, D. Oesterhelt and G.L. Hazelbauer (1989). EMBO J. 8., 631.Google Scholar
  7. 7).
    A. Schimz, K.-D. Hinsch and E. Hildebrand (1989). FEBS Lett. 249, 59.Google Scholar
  8. 8).
    A. Schimz and E. Hildebrand (1987). Biochim. Biophys. Acta 923, 222.Google Scholar
  9. 9).
    W. Marwan, W. Schäfer and D. Oesterhelt (1990). EMBO J. 9, 355.Google Scholar
  10. 10).
    W. Marwan and D. Oesterhelt (1987). J. Mol. Biol. 195. 333.Google Scholar
  11. 11).
    D. Oesterhelt and W. Marwan (1987). J. Bacteriol. 169, 3515.Google Scholar
  12. 12).
    W. Marwan, P. Hegemann and D. Oesterhelt (1988), 199, 663.Google Scholar
  13. 13).
    R. Henderson and G. Schertler (1990). Phil. Trans. R. Soc. Lond. B326, 379.Google Scholar
  14. 14).
    R. Henderson, J.M. Baldwin, R.A.Ceska, F. Zemlin, E. Beckmann and K.H. Downing (1990). J. Mol. Biol., 213, 899.Google Scholar
  15. 15).
    E.S. Schegk and D. Oesterhelt (1988). EMBO J. 7, 2925.Google Scholar
  16. 16).
    A. Blanck, E. Ferrando, E.S. Schegk and D. Oesterhelt (1989). EMBO J. 8, 3963.Google Scholar
  17. 17).
    H.J. Butt, K. Fendler, E. Bamberg, J. Tittor and D. Oesterhelt (1989). EMBO J. 8., 1657.Google Scholar
  18. 18).
    T. Marinetti, S. Subramaniam, T. Mogi, T. Marti and H.G. Khorana (1989). Proc. Natl. Acad. Sci. USA 86, 529.Google Scholar
  19. 19).
    S. Subramaniam, T. Marti and H.G. Khorana (1990). Proc. Natl. Acad. Sci. USA 87, 1013.Google Scholar
  20. 20).
    J. Tittor, C. Söll, D. Oesterhelt, H.-J. Butt and E. Bamberg (1989). EMBO J. 8, 3477.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. Oesterhelt
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedFed. Rep. of Germany

Personalised recommendations