The Phosphorylation of Rhodopsin

  • K. Palczewski
  • P. A. Hargrave
Conference paper
Part of the Research Reports in Physics book series (RESREPORTS)


Visual transduction in retinal photoreceptor cells results from a cascade of chemical reactions that translate a light signal into a hyperpolarization of the plasma membrane of the cell (reviewed by Stryer 1986; Chabre and Deterre 1989). The highly regulated reactions in this cascade are responsible for initiating, amplifying and quenching the light-induced electrical response. Three different proteins modulate the reactions by binding to the surface of metarhodopsin II during the course of photo-transduction: transducin, rhodopsin kinase, and arrestin. Transducin, a retina specific G-protein, is involved in amplifying the light signal; rhodopsin kinase and arrestin participate in quenching the light signal.

Light-induced phosphorylation of rhodopsin was detected independently in three laboratories (Bownds et al. 1972; Kühn & Dreyer 1972; Frank et al. 1973). Later, this reaction also was found to occur in vivo (Kühn 1974). The work of Hermann Kühn has greatly contributed to our understanding of the quenching mechanism of photolyzed rhodopsin. The group characterized many properties of rhodopsin kinase (McDowell & Kühn 1977; Kühn 1978; Wilden & Kühn 1982) and showed that phosphorylation alone is insufficient for quenching photolyzed rhodopsin. His laboratory also has shown that a second protein, arrestin, is required to inhibit phosphodiesterase and, thus, the entire phototransduction cascade (Kühn et al. 1984; Pfister et al. 1985; Wilden et al. 1986).

In this review, we will summarize our current work on the properties of rhodopsin kinase and the role of phosphorylation of rhodopsin.


Light Signal Ribose Moiety Purine Ring Nucleotide Substrate Rhodopsin Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benovic, J.L., Mayor, F., Jr. Somers, R.L., Caron, M.G., and Lefkowitz, R.J. (1986) Nature 322, 869–872CrossRefGoogle Scholar
  2. Benovic, J.L., DeBlasi, A., Stone, W.C., Caron, M.G., and Lefkowitz, R.J. (1989) Science 246, 235–240PubMedCrossRefGoogle Scholar
  3. Bownds, D., Dawes, J., Miller, J., and Stahlman, M. (1972) Nature New Biol. 237, 125–127PubMedGoogle Scholar
  4. Chabre, M. and Deterre, P. (1989) Eur. J. Biochem. 179, 255–266PubMedCrossRefGoogle Scholar
  5. Fowles, C., Akhtar, M., and Cohen, P. (1989) Biochemistry 28, 9385–9391PubMedCrossRefGoogle Scholar
  6. Frank, R.N., Cavanagh, H.D., and Kenyon, K.R. (1973) J. Biol. Chem. 248, 596–609PubMedGoogle Scholar
  7. Fukuda, Y., Kokame, K., Okano, T., Shichida, Y., Yoshizawa, T., McDowell, J.H., Hargrave, P.A., and Palczewski, K. (1990) Biochemistry 29, 10102–10106CrossRefGoogle Scholar
  8. Kelleher, D. and Johnson, G.L. (1990) J. Biol Chem. 265, 2632–2639PubMedGoogle Scholar
  9. Kemp, B.E., Benjamini, E., and Krebs, E.G. (1976) Proc. Natl. Sci. USA 73, 1038–1042CrossRefGoogle Scholar
  10. Kuenzel, E.A. and Krebs, E.G. (1985) Proc. Natl. Acad. Sci. USA 82, 737–741PubMedCrossRefGoogle Scholar
  11. Kühn, H. (1974) Nature 250, 588–590PubMedCrossRefGoogle Scholar
  12. Kühn, H. (1978) Biochemistry 17, 4389–4395PubMedCrossRefGoogle Scholar
  13. Kühn, H. and Dreyer, W.J. (1972) FEBS Lett. 20, 1–6PubMedCrossRefGoogle Scholar
  14. Kühn, H. and Bader, S. (1976) Biochim. Biophys. Acta 428, 13–18PubMedCrossRefGoogle Scholar
  15. Kühn, H, Hall, S.W., and Wilden, U. (1984) FEBS Lett. 176, 473–478PubMedCrossRefGoogle Scholar
  16. Lebioda, L. Hargrave, P.A., and Palczewski, K. (1990) FEBS Lett. 266, 102–104Google Scholar
  17. Lee,R. H., Brown, B.M., and Lolley, R.N. (1981) Biochemistry 20, 7532–7538Google Scholar
  18. Litchfield, D.W. Arendt, A. Lozeman, F.J., Krebs, G.E., Hargrave, P.A., and Palczewski, K. (1990) FEBS Lett. 261, 117–120Google Scholar
  19. McDowell, J.H. and Kühn, H. (1977) Biochemistry 16, 4054–4060PubMedCrossRefGoogle Scholar
  20. Palczewski, K., McDowell, J.H, and Hargrave, P.A. (1988a) Biochemistry 27, 2306–2313PubMedCrossRefGoogle Scholar
  21. Palczewski, K., McDowell, J.H., and Hargrave, P.A. (1988b) J. Biol Chem. 263, 14067–14073PubMedGoogle Scholar
  22. Palczewski, K., Arendt, A., McDowell, J.H., and Hargrave, P.A. (1989a) Biochemistry 28, 8764–8770PubMedCrossRefGoogle Scholar
  23. Palczewski, K., Hargrave, P.A., McDowell, J.H., and Ingebritsen, T.S. (1989b) Biochemistry 28, 415–419PubMedCrossRefGoogle Scholar
  24. Palczewski, K., McDowell, J.H., Jakes, S., Ingebritsen, T.S., and Hargrave, P.A. (1989c) J. Biol Chem. 264, 15770–15773PubMedGoogle Scholar
  25. Palczewski, K., Carruth, M.E., Adamus, G., McDowell, J.H., and Hargrave, P.A. (1990a) Vision Res. 30, 1129–1137PubMedCrossRefGoogle Scholar
  26. Palczewski, K., Kahn, N., and Hargrave, P.A. (1990b) Biochemistry 29, 6276–6282PubMedCrossRefGoogle Scholar
  27. Pfister, C, Chabre, M., Plouet, J., Tuyen, V.V., De Kozak, Y., Faure, J.P., and Kühn, H. (1985) Science 228, 891–893PubMedCrossRefGoogle Scholar
  28. Somers, R.L. and Klein, D.C. (1984) Science 226, 182–184PubMedCrossRefGoogle Scholar
  29. Stryer, L. (1986) Annu. Rev. Neurosci. 9, 87–119PubMedCrossRefGoogle Scholar
  30. Walter, A.E., Shuster, T.A., and Farber, D.B. (1986) Invest. Ophthalmol. Vis. Sci. 27, 1609–1614PubMedGoogle Scholar
  31. Wilden, U. and Kühn, H. (1982) Biochemistry 21, 3014–3022PubMedCrossRefGoogle Scholar
  32. Wilden, U., Hall, S.W., and Kühn, H. (1986) Proc. Natl. Acad. Sci. USA 83, 1174–1178PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • K. Palczewski
    • 1
  • P. A. Hargrave
    • 2
  1. 1.R.S. Dow Neurological Sciences Institute of Good Samaritan Hospital and Medical CenterPortlandUSA
  2. 2.Department of Ophthalmology, and Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations